
SEMI-ITERATIVE METHODS ON
DISTRIBUTED MEMORY MULTIPROCESSOR ARCHITECTURES

A. Hadjidimos, EN. Houstis, JR Rice,
MK. Samartzis and EA. Vaualis

Purdue University
Department of Computer Sciences

West Lafayette, N 47907

ABSTRACT

In the parallel ELLBACK (//ELLPACK) project we are deveIoping a library of parallel iterative methods for
distributed memory multiprocessor systems and software tools for partitioning and allocation of the underlying
computations. In this paper we discuss the implementation issues within the JELLPACK environment and present
preliminary performance results of some of the modules on three hypercube based architectures: NCUBE, iPSC/l
and iPSC2. These results indicate that the iterative methods are capabIe of delivering close to optimal scaled speed-
ups while the combination of concurrent/vector processing can lead to sizable improvements of the overall perfor-
mance. These experiments have shown that distributed memory systems are capable of solving significantly large
problems effectively.

1. INTRODUCTION

In this paper we discuss the implementation of a
library of pam.UeI iterative methods (//IPACK) for
solving large linear systems of algebraic equations
obtained by discretizing elliptic partial differential
equations (PDEs) with various finite element and
difference schemes. Preliminary performance results
are reported for some of the modules for three existing
hypercube machines. This library currently consists of
the 12 modules listed in Table 1.1 using well known
iterative methods and ordering schemes.

For the efficient development of new parallel elliptic
solvers and the transformation of existing ones from
the sequential ELLPACK system, we have developed
and implemened a parallel software environment
~HOUS 89a] for distributed memory multiprocessor
systems. The architecture of this system is described
in Section 2, its current functionality is capable of
supponing geom.fwy decomposition methods at the
levels of the user interface and solution process. All
the domain splitting solvers are driven by a geometry
decomposirion tool described in mous 89b] and [Chri
891.

//ITPACK module

Jacobi-CG
Jacobi-53
SOR
SSOR-CG
SSOR-SI
Jacobi Schwatz
GS Schwarz

Ordering Scheme

block, mow-head
block, arrow-head
block arrow-head
block. mow-head
block, arrow-head
block
block

Method

Jacobi conjugate gradient
Jacobi with Chebyshev acceleration
Successive Over-Relaxation
Symmetric SOR conjugate gradient
Symmeuic SOR with Chebyshev acceleration
Schwaxz splitig with Jacobi iteration
Schwarz splitting with Gauss-Seidel iteration

Table 1.1 Parallel iterative methods in the //TI’F’ACK library.

This research was supported in part by AFOSR grant
884243. Al70 grant DAAG29-83-K-0026 and NFS
grant CCR-8619817.

82

The parallel block iterative schemes are based on the
sequential modules in the ELLPACK system which
are also driven by the geometry decomposition tool.
The iterative Schwarz splitting schemes are formulat-
ed on subdomains which are implicitly defined
through the non-overlapping domain splitting pro-
duced by the decomposition tool and an overlapping
parameter. The paper is organized as follows. Sec-
tion 2 contains a brief description of the proposed ar-
chitecture for the //ELLPACK system.

In Section 3 we present the parallel implementa-
tion strategies used and discuss their communication
complexity. Performance results obtained on Ncube,
iPSC/l and iPSC/2 hypercube machines are presented
and discussed in Section 4. A summary of the experi-
ence gained so far is included in Section 5.

2. PARALLEL ELLPACK ARCHITECTURE

The overall design objective of the //ELLPACK
is the creation of a uniform programming environment
in which parallel software modules associated with the
components of PDE solvers can be implemented and
interfaced with minimum effort. The transformation of
the existing sequential ELLPACK modules to parallel
versions was another important consideration that
influenced the design of //ELLPACK system. Follow-
ing the ELLPACK conventions, a parallel PDE solver
either consists of a set of modules realizing the various
steps of the PDE solution or a single module. In
ELLPACK terminology this solvers are called multi-
phase or triples. In the current implementation of
//ELLPACK architecture, the partition and the alloca-
tion of the underlying computation takes place at the
discrete geometrical data structures (mesh data). This
phase is implemented by the geometry decomposition
tool [Hous 89b] which is supported by a number of
automatic mapping algorithms [Chri 891. In the
//ELLPACK library we implement and study linear
solvers which assume block or substructuring order-
ing of algebraic data defined with respect to a
predefined mesh decomposition. In contrast with
ELLPACK, the indexing of the algebraic data in
//ELLPACK takes place prior to the generation of
these data. This sequencing is necessary for reducing
the communication overhead among processors. For
the so called multi-phase PDE solvers, we have gen-
eralized the ELLPACK interfaces among the various
modules [Hous 89af in order to accommodate the
geometry decomposition, indexing communication
interfaces and I/O parameters and data structures.
Specifically, a parallel multi-phase elliptic PDE solver
consists of eight primitive modules: domain discreti-
zation, mesh generation, indexing, discretization,
discrete system solution, post processing of the solu-

tion and computation back play. Currently the first
three modules are executed at the host or fast remote
servers. The indexing takes place at the host while the
interfaces of these modules are broadcast to all pro-
cessing elements of the targeted architecture. Each
individual processor is responsible for the generation
of the equations associated with the assigned sub-
domains and setting up the communication interfaces
among them, all this is guided by the decomposition
tool. The algebraic data are stored locally in sparse
mode together with global indexing information. The
communication interfaces depend on the ordering
scheme used and are defined in terms of the local and
global information generated by the domain processor
and the indexing module. In order to implement the
back play of the parallel execution, we use the
SEECUBE tool [Couc 871.

3. A LIBRARY OF PARALLEL ITERATIVE
METHODS

One of the objectives of the //ELLPACK project
is the design and the implementation of an efficient
portable general purpose library of iterative methods
for the solution of large PDE discretization systems of
arbitrary PDE domain geometry. This library is
designed to operate efficiently on distributed memory
multiprocessor machines. The modules in this library
are driven by two tools the geometry decomposition
tool described in [Hous 89b] and [Chri 891, and an
expert system that supports the selection of the
appropriate solution modules and their parameters. The
proposed library currently consists of the ITPACK
methods implemented under two different orderings
and two iterative schemes based on Schwarz splitting.
These are four semi-iterative schemes with conjugate
gradient and Chebyshev acceleration and the basic
SOR method implemented using block and substruc-
turing orderings of the equations and the correspond-
ing unknowns. In the block ordering we assume a
geometry decomposition of contiguous elements which
results in a rowwise partition of the associated alge-
braic data structures of Au =J Each processor i is
assigned the computation associated with ri consecu-
tive rows of the matrix A and the corresponding slice
of the unknown u and the right hand side J Depend-
ing on the discretization method (or the block structure
of the coefficient matrix A) and the hardware
configuration (number of processors) selected (see Fig-
ure 3.1) we map the partitioned data structure onto an
interconnection scheme (ring, grid, etc) which can be
embedded into a hypercube ensemble of processors,
In this way we have communication only between
nearest neighbor nodes.

83

@> 2-d grid
Figure 3.1 Data structure obtained from the block order-

ing scheme.

The substructuring ordering is defined with
respect to some decomposition or splitting of the asso-
ciated discrete geometric data structures into a number
of non-overlapping subdomains. In [Chri 891 and
IJIous 89b] this partition problem is studied and an
appropriate algorithmic infrastructure is developed for
its automatic solution. In this ordering scheme the
algebraic data associated with subdomain interfaces are
ordered last while the rest are ordered first. This leads
to the Arrow-Head structure indicating in Figure 3.2.

0
q

cl
cl

il
r-

0

-1
cl cl cl interior

Cl
El- (Int:rfacc

Figure 3.2 Arrow-Head structure obtained by the sub-
slr~cturing ordering scheme.

For the implementation of the Schwarz splitting
modules we derive them from non-overlapping domain
decompositions and the overlapping region is defined
implicitly by expanding these substructures or
superelements. The amount of overlapping is a fixed
parameter for all subdomains and it is considered as an
acceleration parameter.

For the modules of the //ITPACK the initial esti-
mation of the solution and various acceleration param-
eters are implicitly calculated inside each module or
are provided by the expert system front-end. Finally,
stopping criteria similar to the ones used in sequential
ITPACK [Rice 851 are employed. For the description
of the iterative schemes included in //ITPACK we
assume thought the scaled splitting (144)~ = c of
the discrete equations, with L being a strictly lower tri-
angular matrix and U being a strictly upper triangular
one. In the next subsection we indicate some impor-
tant implementation issues related to the parallel for-
mulation of the methods in Table 1.1.

3.1 Parallel SOR

Assuming the above mentioned (I-L-U) split-
ting of the matrix A, the nA iteration of the SOR
method is given by

u(n+l) = (-@u ~“+‘~+uu~“~+c)c(l-o)u~“~ (34

where cc is the overrelaxation parameter. The first SOR
iteration uses w=l and a heuristic procedure is used to
estimate the optimum relaxation factor 0.

First, we consider the SOR implementation over
the block structures of Figure 3.1. Since SOR reuses
updated values as soon as they are available, each pro-
cessor must wait for the previous processors’ updates
before it starts working on its equations. In this imple-
mentation we paralIelize the SOR iterations in a pipe-
lined fashion. It is known that pipelining combined
with global broadcasts leads to a serial execution.
Thus, we use a pipeline technique to calculate the
vector/vector operations for avoiding global broad-
casts. A number of specific details about the imple-
mentation of the algorithm are worth pointing out
Before the scaling of the matrix A and the right hand
side vector f we communicate the diagonal entries of A
in a nearest neighbor fashion. More precisely each
node receives the associated diagonal entries from the
nearest neighbors (right and left in the ring case and
north, south, west and east in the grid case) and sends
its own entries. Within each iteration we first receive
the updated values of the unknown vector u from the
“previous” (right in ring case and south and west in the
grid case) processors. Next the updating of the local
unknowns takes place and these values are sent to the
“next” processors (left in the ring case and north and

84

east in the grid case). The calculation of the inner pro-
ducts take place locally and a similar communication
scheme is used to form the various norms globally.
Finally only the last processor applies the stopping test
and sends a “halt” flag to the others when convergence
has been reached. It is clear from the above discussion
that only nearest neighbor data transfer is used while
we overlap communication with computation as much
as possible. Furthermore, it can be seen that for this
implementation we need more iterations than the
sequential SOR method to reach convergence.

Second, we present the formulation of the
domain decomposition SOR. In this case, it is
assumed that the algebraic data axe stored in an
arrow-head structure (Figure 3.2) where each diagonal
block and its corresponding coupling interface matrix
are stored in different processors. For the interface
equations there are three mapping alternatives. They
can be allocated to

1)

2)

a single processor, or

be partitioned rowwise for symmetric matrices
and columnwise for non-symmetric ones and
allocated to the previous used processors, or

3) recursively be partitioned using some substruc-
tuting of the interfaces.

For two dimensional problems we are exploring the
first two options. The third alternative has been formu-
lated in [Farh 873 in connection with SOR iteration
which we plan to implement in the //ITPACK library.

3.2. Parallel Semi-iterative Methods.

It is well known that the basic iterative methods
(such as Jacobi, SSOR) can be accelerated by using
appropriate linear combinations of consecutive iterants
of the basic methods. These acceleration techniques
lead to the so-called semi-iterative methods. We con-
sider four such methods based on the Jacobi and
SSOR basic iteration schemes and the accelerations
Chebyshev (SI) and conjugate gradient (CG). A
detailed description of these methods can be found in
[Kinc 821 while some of the implementation issues are
discussed in [Rice 851. If G is the Jacobi iteration
matrix then the methods are defined by the iteration
equation

u(” + ‘) = pn + 1 [y,, + 1 (Gd”) + k) (3.2)

+ (1 -‘(n + &(“)I + (1 - pII + I)& l)

where P,,+~ and yn+l are appropriate acceleration
parameters. In the case of Chebyshev acceleration
these parameters are given in terms of the M(G), larg-

est, and m(G), smallest eigenvalues of G. In the
absence of their values, adaptive procedures can be
used to estimate them mice 851. In order to visualize
the parallel implementation of the sequential ITPACK
routines we present the Jacobi-S1 module in a high
level form.

d := f;

start-iterations;
d := d-Au; compute pseudo residual
dnrm = dT x d, unrm = uT x u; compute d and u norms
if adapt-test(dnrm) then; adaptivity tests

if cme-test(dnrm,unrm) then;
compute-cme; recompute M(G)

else if sme-test(dnrm,unrm) then;
compute-sme; recompute m(G)

endif;
endif;
if cow-tests(dnrm,unrm,sme,cme) goto unscale(u);
u := compute(sme,cme,u); compute new estimation of u
got0 start-iterations;

unscale(u); unxaling ofu

Algorithm 3.1 The sequential adaptive Jacobi-S1 algorithm.

The use of the conjugate gradient acceleration
yields a convergence rate which is nearly always faster
than Chebyshev acceleration and can be described also
by Algorithms 3.1 and 3.2. In the conjugate gradient
the estimation of the spectral radius (M(G) and m(G))
is not needed for calculating the acceleration parame-
ters but used in performing the stopping and adaptivity
tests. These parameters are calculated using the pro-
duct dT x A x d.

The Symmetric SOR (SSOR) based semi-
iterative methods are characterized by the matrix

Q = k-0(2-o)]-‘(I-oL)(Z-0U)

involved in the iteration matrix G = I-Q-‘A. Again
the semiiteration equations are defined by (3.2) where
pn and ?(n can be determined by either Chebyshev or
conjugate gradient accelerations. For the implementa-
tion we use the fact that, each step of the SSOR
method consists of two SOR (forward and backward)
sweeps. For the visualization of the inherent parallel-
ism in the semi-iterative SSOR computation we
include a high level description of the SSOR-SI
ELLPACK module. The CG case is almost identical
with the differences indicated above.

85

d := f;

start iterations;
sor(f&ward); forward SOR sweep
sor(backward); backward SOR sweep
residual(forward,backward);
if (adapt) then; udaptivify test
if (acceleration) then;
estimate(acce1); estimate acceleration parameters

endif;
if (relaxation) then;
estimate(omega); estimate optimum omega

endif;
endif;
if (convergence) got0 unscale;
got0 start-iterations;

unscale(u); unsealing of u

Algorithm 3.2 The sequential adaptive SSOR-SI algorithm.

3.2.1 Parallel Jacobi Semi-iterative Methods

Starting with the block partition given above
(Figure 3.1), we denote by A”‘, uCi) and p) the linear
system blocks assigned to processor i and we assume
they reside in its local memory. For the parallel
Jacobi-S1 method we see from the description of Algo-
rithm 3.1 that each processor needs to broadcast its
own diagonal entries of A and receive appropriate
diagonal entries of other processors for scaling and
unsealing the matrix A. This can be done by means of
fanout/faniE algorithms [Ayka 881, [Gust 881. The
computation of the inner products required for the cal-
,culation of the norms of u and d is done by first com-
puting on each processor i, the local part of the inner
product and then using additive bidirectional
exchanges [Gust 881 to calculate the inner product as
the sum of all partial sums. The calculation of the
new estimation of u within each iteration is done
locally after receiving appropriate values of the old
estimation from neighbor processors. From the above
discussion one concludes that the only additional com-
putation required to parallelize the original algorithm
is due to indexing. In addition, interprocessor com-
munication involves mostly nearest neighbor
exchanges of one dimensional arrays and global
exchanges of scalars. This parallel implementation
gives _ a iw~ aspect ratio

(r=
time for computation j which leads to efficient . time for communication ’

performance.

If we use the substructuring ordering and con-
sider the corresponding arrow-head data structures in
Figure 3.2 then we assign to each processor the aqua-
tions associated with a subdomain. Then the interface

equations are equally distributed among all processors.
In this implementation, within each iteration the com-
putation of the required inner products is performed in
two phases. First, the part local to each processor is
computed and then bidirectional exchanges among all
processors are used to compute the part associated
with the interface data. For the updating of the
unknown vector within each iteration only the values
of the interface unknowns are broadcast.

From Algorithms 3.1 and 3.2 and the preceding
discussion it can be seen that the parallel implementa-
tion of the conjugate gradient acceleration can be
treated similarly. Moreover, the calculation of the inner
product dT x A x d that is required for estimating its
acceleration parameters can be treated similarly using
the fanin/fanout algorithms.

3.2.2 Parallel SSOR Semi-iterative Methods

From the discussion in Sections 3.1 and 3.2 it is
clear that the parallel realization of accelerated SSOR
methods folIows easily from the parallel implementa-
tion of the SOR method and the parallel accelerated
techniques used for the Jacobi semi-iterative methods.
Specifically, in the block structured case, we perform
both the backward and the forward SOR sweeps in a
pipelined fashion. In the same way we calculate the
associated pseudo-residuals and the inner products
needed. It can be seen that the substructuring ordering
transforms the two SOR sweeps to a Jacobi-like
scheme. Within each SSOR iteration the updates of the
interior unknowns local to each subdomain are per-
formed in parallel while a broadcast of the interface
unlmown vector is needed before each processor starts
updating its interface unknowns. Note that, in addition
to the inner products needed for the estimation of the
acceleration parameters, additional vector/vector opera-
tions are performed to estimate the optimum relaxation
parameter o even in the conjugate gradient case.

3.3 Parallel Schwarz Splitting Methods

It has been recognized that the Schwarz splitting
technique is a powerful alternative for solving elliptic
PDEs in parallel architectures (see [Rodr 841, [Tang
871 and [Hous 88b]). For the //ELLPACK implemen-
tation of the Schwarz splitting the domain decomposi-
tion tool is used first to split the PDE domain into a
set of non-overlapping subdomains. Then, the overlap-
ping parameter is used to expand the subdomains to
overlapping ones and on each one of them appropriate
boundary conditions ae imposed where needed. In
this way the original PDE problem is replaced by a
number of PDE subproblems. The interaction among
them is achieved by means of an iteration scheme with

86

the solution of each of them being assigned to a
different processor. It is important to notice that each
subproblem needs to receive updates on its “pseudo-
boundaries” from processors associated with the solu-
tion of the “nei@xx” subproblems and to send its
local updated unknowns on the “pseudo-boundaries” of
the “neighbor” subdomains to corresponding proces-
sors. The concept of “neighbor” subproblem is deter-
mined from the connectivity information of the
geometric decomposition, the overlapping parameter
and the ordering of the subdomains. The order of
receiving and sending the data depends on the iteration
scheme used. Most of the basic convergence proper-
ties, developed essentially in modr 841 and [Tang 871,
have been extended to cover cases where more than
two overlapping subdomains share a common part of
the original region. A detailed discussion of a
//ELLPACK implementation of the S&wan splitting
associated with Jacobi and Gauss-Seidel iterative
schemes, together with numerical experiments on
hypercube architectures, is given in [Hous 88b].

4. PERFORMANCE RESULTS

In this section we present the performance data
of some //ITPACK modules solving the linear equation
system arising from discretizing Elliptic PDEs on the
NCUBE, iPSC/l and iPSC/2 hypercube multiproces-
sors. Table 4.1 indicates the specific hardware
configurations of these machines used in our experi-
ments. Extensive performance comparison of these
machines together with a detailed description of their
hardware and software characteristics can be found in
puni 883.

Table 4.1 Wypercube configurations used for the imple-
mentation of semi-iterative methods.

The Iinear systems considered are obtained by
discretizing linear second order elliptic partial
differential equations on rectangular and
non-rectangular domains. The timings reported here
do not include the cost of the discretization phase, this
time being at most 10% of the total solution cost. The
solution time includes the time per iteration and the
cost of adaptive and convergence test procedures. All
computations were carried out in single precision. The
FORTRAN implementation of the algorithms are
almost identical. for the three machines and portability

was achieved by conditional compilation of the Iower
level communication and timing routines.

Figure 4.1 and Table 4.2 show the scaled perfor-
mance of the parallel accelerated Jacobi semi-iterative
methods. In this experiment we consider the solution
of the elliptic equation U, + uyy - 100~ =f on the
domain Sz = [O,lO]x[O,lO] with solution u = 1 on the
boundary of R and using the 5-point star finite
difference method.

im:

112

10

s
6

4

z

Figure 4.1 Scaled speed up of parallel Jacobi-S1 (J-X)
and Jacobi-CG (J-CG) on the NCUBE mul-
tiprocessor. Each processor is assigned 400
equations and the assumed iteration tolerance
is IO”.

The data indicate almost perfect scaled speed up
for both methods. It is apparent that Jacobi-CG is fas-
ter than Jacobi-S1 since it requires fewer iterations
(42) compared to the Jacobi-S1 (55). On the other
hand, the need of computing the inner product
dT x A x d Ieads to an increase of the time needed
for communication. It should be pointed out that for
comparison purposes in the data in Figure 4.1 and
Table 4.2 we keep the spectral radius of the iteration
matrix the same as we change the mesh size of the
discretization.

87

NCUBE
Nodes T,,, Tc

iPSC/Z

Tco, Team _
4 764.2 tz 199.5 20.9
8 764.6 85.1 201.9 21.1

16 765.1 86.2 203.0 22.3
32 766.9 88.3 204.2 24.0

Table 4.2 Communication (TcO-) and computation
(Scow) time requirements of Jacobi-S1 on
NCUBE and iPSC/2 for 4000 equations per
processor.

Table 4.2 lists the numerical values of the scaled
performance of the Jacobi-S1 (similar measurements
have been obtained for the Jacobi<G) for the
NCUBE and iPSC/2 machines. These data suggest
that iPSC/z. is a faster machine while the speed up of
the method is identical. In Table 4.3 we give the fixed
size speed ups achieved by the parallel Jacobi-S1 on
the NCUBE after 400 iterations for the PDE problem
considered in Figure 4.1. The fixed size speed up has
been determined with respect to the sequential imple-
mentation.

Tonl rime
,A0 :........:.. :.. *

.+----- :
, So: \cvxizrd

2oo _...__.............. i .._.................; .._............_._._ i .
Vexxizcd

yf y. < i 1 1

Fkure 4.2 The effect of iPSC/2 vector processing for
Jacobi-SI. Each processor is assigned a fixed
number of equations as the hypercube size in-
creases fkom 4 to 8 fo 16. thus the linear sys-
tem size increases by a factor of 4 and the
memory used by a factor of 16.

Nodes Grid SPd UP Grid Speed up Grid Speed up
4 3200x4 1.12 1.23 -
8 1600x8 2.08 2.17 -

16 800x 16 4.19 4.52 4.38
32 400x32 7.93 128 x 128 8.52 256 x 256 9.10
64 200x64 14.93 15.90 17.45

128 100 x 128 13.60 26.74 33.15

Table 4.2 Fixed speed up of Jacobi-S1 on NCUBE after 400 iterations.

Figure 4.2 illustrates the effect of vector proces-
sors in the iPSC/z. The results indicate that a speed
up by a factor of four is obtained from vectorization.
The vectorization of the Jacobi-S1 &computations is
achieved by using the vector BLAS, fill in, gather and
scatter routines.

The performance of the parallel SOR module
with block ordering is given in Figure 4.3. In this
experiment we have considered the Poisson problem
on the unit square with Dirichlet boundary conditions
and true solution u = 3e”+Y(x-x2)0)-y2). The 5-point
star discretization module has been used and the fixed
point speed up was calculated with respect to the
sequential SOR method.

88

32-

16 -

8-

4-

1- 1

:
:

(-jp&nm :
:

:

NCUBE---

iPscr2 -

I I I
4 8 16 32

Number of nodes

Figure 43 Fixed speed up of the block structured SOR
on the NCUBE and PSCR.

To measure the performance of the //ITPACK
modules that assume the substructuring ordering of the
algebraic data, we consider the partial differential
equation U, + u,,, - (l+x)u = f(x) defined on the rec-
tilinear domain depicted in Figure 4.4. The function f
is selected so that u = e(z+y) and the rectangular grid is
defined by an overlay grid of 64 x 64 lines.

0 1 2 3 4

Figure 4.1 The rectilinear PDE domain.

The domain decomposition is done heuristically
using the domain decomposirion roof of //ELLPACK
and the automatic load partitioning strategies

developed in [Hous 89bl. We have used the
/iELLPACK-NCUBE 5point star discretization
module to generate linear systems of equations. In this
environment the host processor gets the domain’s
decomposition from DecTool, then applies the
specified ordering of the algebraic data structures and
distributes this information to processor nodes where
the generation of the discrete equations takes place.
Figure 4.5 shows the per iteration scaled and fixed
speed ups achieved in the case of Jacobi-CG on
NCUBE. For these measurements we used 100 equa-
tions per processor to compute the scaled speed up and
64 x 64 overlay grid for the estimation of the fixed
speed up. It is worth pointing out that the performance
of this method depends on the decomposition.

32

16

8

optimum

Fixed - - -

1 4 8 16

Number of nodes

32 64

Figure 45 Per iteration speed ups of the domain decom-
position Jacobi-CG method on the NCUBE.

5. CONCLUSIONS.

Iterative methods have been shown [Hous 88a]
to be effective alternatives for solving well behaved
sparse large linear systems of equations with “realistic”
accuracy requirements. Their potential is even greater
in parallel computation environments. We are
developing a library of parallel iterative methods
which is an extension of the ITPACK package for dis-
tributed memory machines. In this paper we present
the performance of some of them on commercially
available message passing MIMD (hypercube)
machines. The preliminary experimental results indi-
cate that they are capable of exploiting the parallel
processing power of these machines and delivering
close to optimal scaled speed ups. These dam also

89

indicate that the combination of concurrent/vector pro-
cessing can lead to significant speed ups. Many stu-
dies have overlooked the space complexity of parallel
algorithms/architecture pairs. Our experiments show
that distributed memory systems are capable of solving
very large problems. Specifically, we were able to
solve close to l/2 million finite difference equations in
a reasonable time on NCUBE with 128 processors. A
space and time complexity study for all modules in
Table 1.1 is underway and results will be reported
elsewhere.

ACKNOWLEDGMENTS

We are grateful to the Advanced Computing
Research Facility at Argonne Laboratories for allowing
us to use their iPSC/l and the Advance Computing
Facility at Cornell’s Theory Center for allowing us to
use their iPSC/2.

REFERENCES

[Ayka 881 C. Aykanat, F. Ozguner, F. Ercal and P.
Sadayappan, iterative Algorithms for Solu-

tion of Large Sparse Systems of Linear
Equations on Hypercubes, IEEE Trans.
Computers 37, (1988), 1554-1568.

[Chris 891 N.P. Chrisochoides, E.N. Houstis, C.E.
Houstis, S.M. Kortesis and J.R. Rice,
Automatic Load Balanced Partitioning
Strategies for PDE Computations, Purdue
University CAP0 Technical Report CER-
89-7, February 1989.

[Couc 871 A. L. Couch, Seecube User’s Manual, Tufts
University, Department of Computer Sci-
ence Report, April 1987.

[Duni 881 T. H. Dunigan, Performance of a Second
Generation Hypercube, Tech. Report.
ORNL/TM-10881, Oak Ridge National
Laboratory, Mathematical Science Section,
(1988).

lFarh 871 C. Farhat and E. Wilson, Concurrent Ztera-
tive Solutions of Large Finite Element Sys-
tems, Communic. in Applied Numerical
Methods 8, (1987), 319-326.

[Gust 881 J. L. Gustafson, G. R. Montry and R. E.
Benner, Development of Parallel Methods
for a 1024-Processor Hypercube, SIAM J.
Sci. Stat. Comp. 9, (1988), 609-638.

[Hous 88alE.N. Houstis, J.R. Rice, C.C. Christara and
E.A. Vavalis, Performance of Scientific
Software, Mathematical Aspects of
Scientific Software (Ed. J.R. Rice),
Springer-Verlag, (1988), pp 123-155.

[Hous 88blE.N. Houstis, J.R. Rice, and E.A. Vavalis,
A Schwarz Splitting Variant of Cubic Spline
Collocation Methods for Elliptic PDEs.
Hypercube Concurrent Computers and
Applications, III (G. Fox, ed.), , ACM
Press, (1988), 1746-1754.

[Hous 89alE.N. Houstis, T.S. Papatheodorou and J.R.
Rice, Parallel ELLPACK: An Expert Sys-
tem for the Parallel Processing of Partial
Differential Equations, Math. Comp.
Simul., 31, (1989), to appear.

[Hous 89blE.N. Houstis, P.N. Papachiou, J.R. Rice

[Kinc 821

mice 853

[Rd 841

and M.K. Samartzis, Domain Decomposer:
A Software Tool for Partitioning PDE
Computations Based on Geometry Decom-
position Strategies, Purdue University
Technical Report, in preparation.

D.J. Kincaid, J. Respess, D.M. Young and
R. Grimes, Algorithm 586 ZTPACK 2C : A
Fortran package for Solving Large Sparse
Linear Systems by Adaptive Accelerated
Zterative Methods, ACM Trans. Math. Soft.
8, (1982), 302-322.

J. R. Rice and R. F. Boisvert, Solving Ellip-
tic Problems Using ELLPACK, Springer-
Verlag, New York, (1985).

G. Rodrigue and J. Simon, Jacobi splittings
and the method of overlapping domains for
solving elliptic PDEs, in: Advances in Com-
puter Methods for Partial Diflerential
Equations, Vol. V, (R. Vichnevetsky, R. S.
Stepleman, editor), (1984), 383-386.

[Tang 871 W.P. Tang, Schwarz splitting, a model of
parallel computations, Ph.D. Thesis, Stan-
ford University, (1987).

90

