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We developed an efficient hybrid mode expansion method to study the maximum
tunneling current as a function of the external magnetic field for a 2D large area lateral
window junction. We consider the inhomogeneity in the critical current density, which is
taken a piecewise constant. The natural modes of the expansion in y, are the linearized
eigen-modes around a static solution which satisfies the 1D sine-Gordon equation with
the critical current variation in y, and the boundary conditions determined by the over-
lap component of the bias current, which can be inline or overlap like. The magnetic
field along with the inline component of the bias current enters as a boundary condition
on the modal amplitudes. We obtain fast convergent results and for a ratio of idle to
window widths of w0/w = 4 (in units of λJ ), only two modes are needed. A simple
scaling is obtained for the maximum tunneling current as we vary the idle region width.
We also present the linear electromagnetic waveguide modes taking into account the
variation normal to the waveguide of the critical current and the capacitance.
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1. Introduction

The interpretation of the junction electrodynamics is useful both for the junction

characterization and its exploitation in device design with the desired electromag-

netic properties when an external magnetic field is applied.1 For short junctions,

it is easy to infer such properties as the critical Josephson current density Jc and

the characteristic Josephson penetration length λJ from I0, the maximum current

at zero field, and Hc, the critical field above which the Meissner-like state for flux

penetration breaks i.e., Imax(Hc) = 0 in the (0–1) fluxon branch. For large area

junction parameters, one must fit the whole experimental maximum current pat-

tern, since 1D estimations can lead to erroneous parameters, due to self-field effects

that give the complex patterns.

The situation is more complicated in the so called window junctions which is the

produced device of the most modern layer-by-layer production techniques. In Ref. 2,

we saw that the idle (for tunneling) region surrounding the tunneling window,

influences the fluxon width and therefore, the characteristic scale of the magnetic

flux variation. Thus, one can say that both the idle region2 and the geometry3

introduce a new characteristic length λeff . At the same time, the two dimensionality

of the problem requires a numerical solution with heavy computation. In Ref. 4, an

efficient mode expansion method was used for the study of the large area junction

with homogeneous properties over the whole surface. It was applied for the case

of a pure 2D sine-Gordon system that corresponds to zero idle region. Here, we

extend the method to the case where, there is a lateral idle region along the long

sides of a rectangular junction, so that we still preserve the homogeneity in the x-

direction. This extension requires the calculation of new expansion modes in the

y-direction whose form depends on the variation of the properties of the junction

physical along the waveguide width. The x− y uncoupling follows the homogeneity

of the waveguide in the x-direction, and the fact that we look for traveling waves

in the x-direction. This simplification is of great analytical help, while keeping

the dominant influence of the idle region. It also gives a simple way to take into

account, not only the inhomogeneity in the critical tunneling current, but also in

the inductive properties of the films in an efficient and accurate manner.

It is well known that, the 1D sine-Gordon equation has the linear modes with a

dispersion relation ω(k)2 = 1+k2 (with unity linear wave velocity) with a gap below

ω(0) = 1. On the other hand, a simple (no tunneling) dielectric waveguide with

width w0 will have many branches, which in the long wavelength limit (standing

waves along y) are separated by ∆ω = ciπ/w0, where ci is the linear velocity in

the passive waveguide and for a 2D junction (no lateral region), the modes are

at ωn(0) =
√

(1 + (nπ/w)2). So, in the limit w0 → 0, only the lowest mode need

to be considered as for the 1D sine-Gordon. Our lateral window junction can be

considered as a parallel array structure of two passive waveguides with an active

one in between. This coupling introduces strong dispersion both due to the different

tunneling properties, and the variation of the linear speed with the capacitance

distribution along the width of the waveguide. The knowledge of the spectrum of
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the modes is useful, both for the dynamic properties of fluxons and as a source of

high frequency Cherenkov type radiation, when the velocity of the magnetic flux

matches the phase velocity of some linear waves. These modes will be calculated in

the limit of no losses, which is well satisfied for frequencies less than twenty times

the plasma frequency, which in our case is taken as unity.

In Sec. 2, we briefly describe the model and present the Split Mode method,

where the coupling between x and y is treated in a mode expansion which transforms

the 2D PDE problem into a system of ODE problems. In Sec. 3, we discuss the

variation of the effective characteristic length with the junction geometric para-

meters. In Sec. 4, we present the numerical results for both the inline and overlap

geometry for the case of critical current inhomogeneity. In Sec. 5, we present the

dispersion relation for linear modes. In the final section, we summarize our results.

2. Model and Expansion Method

We consider the case of a long and wide window junction (length ` and width

w) with the lateral idle region symmetrically placed for w/2 < |y| < w0/2. The

length is measured in units of λJ , the characteristic Josephson length in the isolated

window,1 λJ =
√
φ0/Jcµ0d0, where d0 is the magnetic thickness of the junction so

that µ0d0 is the inductance, φ0 is the quantum of the flux and Jc is the critical

current density in the window region.

The static properties of the junction are described by the inhomogeneous 2D

static sine-Gordon equation for the phase difference φ(x, y) i.e.,

∂2φ

∂x2
+
∂2φ

∂y2
= −U(y) sinφ , (1)

where,

U(y) =

{
−1 |y| ≤ w/2 window region

0 w/2 ≤ |y| ≤ w0/2 idle region .
(2)

Equation (1) is the conservation of the current flow in the surface of the super-

conducting films, and the tunneling current across the barrier in the dimension-

less quantities. The surface currents are defined from the gradient of the phase,

in the units of φ0/µ0d0λJ , which is also related to the local magnetic field H, as

∇x,yφ = (ẑ×H), where H is in units of φ0/µ0d0, and ẑ is a unit vector normal to

the superconducting films. The boundary conditions (BC) at the outside perimeter

C with normal n̂ towards the outside are, n̂ · ∇φ|C = n̂ · (ẑ ×H)|C , where H is

the total magnetic field due to bias or the external magnetic field and they are

explicitly written as:

∂φ

∂x

∣∣∣∣
x=±`/2

= He ±
Iin

2w0
, (3)

∂φ

∂y

∣∣∣∣
y=±w0/2

= ± Iov

2`
. (4)
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Fig. 1. Schematic diagrams of the lateral idle window junctions with (a) inline and (b) overlap
geometries. In (a), we show a view from above (top) and a vertical cross-section at y = 0. The
dashed line in (a) denotes that the left electrode is in the lower superconducting film.

If Iov = 0 (Iin = 0), we have the inline (overlap) BC correspondingly (see Fig. 1),

while if both Iin and Iov 6= 0, we can also study the case where the bias current is

peaked near the corners, and in this case the total current is I = Iov + Iin.

For the solution of the problem, we use a split Fourier expansion by introducing

an auxiliary function φ0(y), which satisfies the 1D static equation.

d2φ0(y)

dy2
= −U(y) sinφ0(y) (5)

with the boundary conditions along the lateral boundary in Eq. (4), so that,

dφ0(y)

dy

∣∣∣∣
y=±w0/2

=
Iov

2`
, (6)

where Iov is the current input along the lateral sides. When this is zero, then

φ0(y) = 0 or π, otherwise, the solution is given explicitly in terms of elliptic

functions.4,5

Then, we use the expansion,

φ(x, y) = φ0(y) +
∞∑
n=1

An(x)Xn(y) (7)

where the complete set of the orthonormal functions Xn(y), are the eigenmodes

around the static solution φ0(y), and satisfy,

−X ′′n(y)− U(y) cosφ0(y)Xn(y) = λnXn(y) , (8)

with homogeneous BC, so that, X ′n(±w0/2) = 0, where “ ′ ” denotes the differentia-

tion with the corresponding variable. For the case of zero lateral current where,

φ0 = 0, the eigenvalue problem reduces to that of a square barrier for which analytic
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solutions are given in the Appendix. It is easy, by direct substitution of Eq. (7) in

Eq. (1) and using Eqs. (5) and (8), to obtain the equations for the modal amplitudes

An(x) in the general form.

A′′m(x) − λmAm(x)−
nmodes∑
n=1

{∫ w0/2

−w0/2

U(y) cosφ0(y)Xn(y)Xm(y)dy

}
An

= −
∫ w0/2

−w0/2

dyU(y)Xm(y)

{
sin

(
φ0(y) +

nmodes∑
n=1

An(x)Xn(y)

)
− sinφ0(y)

}
,

(9)

where, nmodes is the number of modes kept in the expansion. For simplicity in the

presentation, in the sequel, we will not give explicitly the arguments of An(x) and

Xn(y).

In the inline geometry, the problem is simplified because the eigenmodes Xn(y)

are independent of the external field and current, and depend only on the widths

of the window and idle regions. Since in that case, φ0(y) = 0, the equations for the

amplitudes Am(x) are simplified to:

A′′m − λmAm +
nmodes∑
n=1

{∫ w/2

−w/2
XnXmdy

}
An

= +

∫ w/2

−w/2
dyXm

{
sin

(
nmodes∑
n=1

AnXn

)}
. (10)

If φ0(y) = π is chosen, then in Eq. (8), the potential is a square well and the sign of

the integral terms in Eq. (10) is negative. A useful remark is that, there is no linear

coupling between the different An’s and the coupling comes only in the nonlinear

terms. This means that the width will be determined by the coefficient of the linear

term corresponding to the most dominant mode, which in our case is λ1.

The eigenvalues of the linear problem in Eq. (8) are not only the numerically use-

ful quantities, but have a physical meaning also. They give the frequenciesωn(k = 0)

of the long wavelength electromagnetic waves that can propagate in the junction

along the x-direction, in the absence of external current and magnetic field. These

will be discussed further in Sec. 5.

In the limit w = w0 (no passive region), the eigenvalues from [Eq. (33)] are

λn ≡ κ2
n = 1 + [2(n− 1)π/w)]2, which simply says that, in the absence of the idle

region, the symmetric modes correspond to an integer number of wavelengths in

the y-direction, and the unity comes from the tunneling, and does not exist in the

opposite limit with w = 0 (no window). In that case, we get the pure waveguide

modes, λn = [2(n − 1)π/w)]2. The corresponding wavelength in the x-direction is

infinite. In the case of w0 = w → 0, the separation between the eigenvalues goes

to infinity, so that only the lowest one needs to be considered, i.e., λ1 = 1. This is
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the long wavelength mode of the usual sine-Gordon dispersion relation ω2 = 1+k2,

where k is the wavevector in the x-direction.

3. Effective λJ and Soliton Width

The lateral idle region has an effect on the structure of the soliton and in particular

on its width. For a narrow idle region, one can use the approximate expression for

a window centered fluxon,

φ = 4 arctan exp

(
−x− xm

d(y)

)
, (11)

where we use a y-dependent width d(y). Under certain conditions, the variation of

d(y) with y is small, and then one can define an average half-width which can be

determined by the energy minimization6 to be equal to:

d0
i =

√
w0

w
=

√
1 +

2w′

w
, (12)

if the idle region is small with w′ = (w0 − w)/2. The case of a long window in an

infinite idle region can also be treated analytically2 using conformal mapping and

an analogy with two plate capacitors to give,

d∞i =
π

2

1

w

[
1 +

√
1 +

4w2

π2

]
. (13)

This formula can be derived under the condition that, d(y) varies slowly within the

window, which is the case if w/λJ < 1.2

We applied our approach to study the fluxon width by placing it at the center

with no external current and magnetic field. We remark that for a finite junction,

this situation is neutrally stable and therefore, it is important in the numerical

scheme to preserve the symmetry of zero net force, i.e., even the rounding errors

should not cause a small force. For this reason, we chose φ0(y) = π, so that cosφ0 =

−1, and the equations for An are as in Eq. (10), except for a sign change in the last

two terms.

For smallw andw′ (orw0 ≈ w), only one mode is sufficient and the eigenfunction

is almost constant within |y| < w/2. Then, the equation for A1(x) is approximated

as:

A′′1 − λ1A1 + wX2
1 (0)A1 = wX1(0){sin(A1X1(0))} . (14)

If we expand the sine term, then, we can keep the first two terms up to A3
1 which

is a reasonable approximation for the solution near the center. It can be seen that

in this case, the half-width of the solution is determined by the coefficient of the

linear term, i.e., the eigenvalue λ1 (with the width given by D =
√

1/λ1) in Eq. (8),
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which is obtained from the lowest root of:√
1− κ2

n tan
(√

1− κ2
n

w

2

)
= −κn tanh

[κn
2

(w − w0)
]
, (15)

where, we put λn = κ2
n. Note that, because of the symmetry of the problem, we

are interested only in the eigenvalues of the symmetric modes. It is easy to see that

for small w and w′, λ1 = w/w0 and thus, we recover the result of Eq. (12), which

shows that, for this case only, the lateral idle region is important. If w is small, the

higher eigenvalues λn ∼ (2π(n − 1)/w)2(n > 1) are very high in value so that, as

seen in Eq. (10), the corresponding amplitude has to be small since the other terms

are small (bounded).

Another situation for which an approximate analytic result is possible, is the

limit w0 →∞ for which the eigenvalue is given from
√

1− κ2
n tan[

√
1− κ2

n(w/2)] =

κn. If we define κ = sin θ, we can solve and obtain θ/ cos θ = w/2. If w � 1,

then θ ≈ w/2 and the estimation for the width is D = 2/w. This gives the right

dependence on w as in Eq. (13), but with a different factor. It is true that, it is

the lateral part that gives the main effect and therefore, the 1/w dependence, but

the possibility of the lines of constant phase closing around the ends can increase

the fluxon width. We must remember that Eq. (13) was derived for a very narrow

window with the idle region all around and the factor difference is not unexpected.

Another reason for the difference is that, due to the large idle region, one needs an

increased number of normal modes in the expansion.

If we consider w/2 � 1, but still w � w0, then put θ = π/2 − θ̄, to obtain

λ1 = 1/(1 + π2/2w2). In this case, the width (assumed to be uniform) is:

D ≈ (1 + π2/2w2) .

Next, we give numerical estimates for a case of realistic experimental dimensions.

In Fig. 2, we present our numerical results for the half-width, D(y = 0) for a (10×1)

window as a function of w0. The dotted curve is the result of the simple expression

in Eq. (12), while we see that, even for w0 = 4, only three modes (crosses in

Fig. 2) are sufficient to converge to a result which is not very far from the dotted

curve. Actually, the agreement is even better if we had plotted the average width

over y. In fact, the surprise is that it is so close even though the ratio w0/w = 4.

The main reason for this is that, the nonlinearity of the problem does not allow

any significant curving of the constant phase lines in distances less than some

characteristic length which for the pure window is λJ , but for the window junction,

is of the order of D, which can be considered as λeff . Examining Eq. (11), we can

conclude that it is reasonable to average the half-width over the window width

w. The variation of D(y) was less than 5% even for the largest w0. Thus, the

average value will be even closer to the analytic result. For our case, the new width

D can be considered as an effective Josephson length to normalize the junction

dimensions.



June 13, 2000 9:57 WSPC/141-IJMPC 0280

500 J.-G. Caputo et al.

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3 3.5 4

D

Wo
Fig. 2. Plot of static fluxon width as a function of idle region size w0 by including 1 (diamonds),
3 (crosses), and 4 (squares) eigenmodes. Dotted line is from the analytic result in Eq. (12).

4. Maximum Current versus External Magnetic Field

The application of an external magnetic field on a Josephson junction, induces self

fields which tend to oppose the entrance of the magnetic field from the ends in an

analog way as the Meissner effect for the bulk superconductor. This has an effect

that the maximum current that can tunnel through the junction also changes. This

variation for short junctions or for temperatures near the critical superconducting

temperature Tc, is the simple Fraunhofer diffraction pattern. For lengths ` � λJ ,

the maximum current depends on besides the magnetic field, also on the window

dimensions and form, as well as on the idle region geometry.3 It also depends very

strongly on the existence of defects. Thus, the experimental measurement of the

Imax(H) plot can help to characterize the quality of the junction. It can also deter-

mine the parameters of the junction J0 and λJ . For a short junction, this is straight

forward from the maximum current at zero external field and the critical field where

Imax vanishes, and above Hc, the external flux enters the length of the junction. For

a longer junction, one can only do it by fitting the experimental data. In fact, mea-

surement of Imax(0) and Hc for inline current feed is not sufficient to characterize

the junction, since there are three parameters for the perfect junction, i.e., J0, d0

and λeff . For a perfect junction, one can do the measurements at two temperatures

T = 0 and near Tc for both inline and overlap bias current cases. If the junction
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barrier has defects, then one has a difficult task to guess the form of the defects, he

can get some help though from LTSTM measurements.7 Also in some applications,

one is interested to work with low maximum currents but also low external fields,

this can be achieved by a geometry choice.

The maximum tunneling current Imax is a useful quantity since for slightly

higher bias currents, the Josephson device switches from the pair tunneling to the

quasiparticle mode for a given external magnetic field. This switching property can

be exploited in several devices.

The knowledge ofHc, i.e., the value of the magnetic field for which the maximum

tunneling current vanishes is also important for the flux flow operation, since the

external magnetic field (with He > Hc) fixes the squeezed soliton separation and

therefore, the frequency of emitted radiation when the fluxons reach the other end

from the one they are introduced by the magnetic field.

4.1. Inline geometry

In this case, we have Iov = 0 and Iin = I. Even in the inline geometry [see Fig. 1(a)],

the problem loses its 1D behavior due to the idle region. Since there is no current

input along y, we have φ0(y) = 0. This choice is more appropriate than π since

in the center (at x = 0) for a long window, φ(x) is close to zero. Also, the first

eigenmode has the correct form decaying inwards as the Meissner-like effect requires.

The choice φ0(y) = 0, gives the same results as for φ0(y) = π, but shows better

convergence. The eigenmodes Xn(y) can be obtained analytically and in Fig. 3, we

show the first four for w = 1 and w0 = 4. Due to the symmetry of the boundary

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y−direction

X
n(

y)

Fig. 3. Eigenmodes Xn(y) with n = 1 − 4 for the inline geometry (independent of current) for

w0 = 4, n = 1 (continuous line), n = 2 (long dashed line), n = 3 (short dashed line), and n = 4
(dotted line).
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conditions, we kept only the symmetric eigenmodes, while for the odd eigenmodes,

the modal amplitudes vanish. If there was no idle region, the modes would be

simple cosine modes of the form cos(2π(n−1)/w). In fact, only the first two modes

differ significantly from the cosine form. Since for the inline geometry, φ0(y) is

independent of the bias current, the eigenmodes depend only on the parameters w

and w0. The modal amplitudes are obtained from Eq. (10) with the BC.

dAm

dx

∣∣∣∣
x=±`/2

=

(
H ± I

2w0

)∫ w0/2

−w0/2

Xn(y)dy . (16)

In Fig. 4, we plot the maximum tunneling current as a function of the external

magnetic field in the inline geometry for three values of w0 = 1.2, 2.0, and 4.0. The

increase of the maximum current at zero magnetic field with w0 is easily understood

if we keep in mind the increase of the effective Josephson length. The shift of theHc

value for zero tunneling current is also easy to understand because, at that point

we have exactly the penetration of one unit of the magnetic flux. The length over

which magnetic flux penetrates at the edges is proportional to λeff . Thus, for an

increase of w0 (which increases the characteristic length), we obtain a decrease of

Hc. In fact, using the numbers for λeff from Fig. 1, we get the Hc within 5%.

In Fig. 5, we plot the Hc as a function of the inverse of the effective length 1/D,

and as expected we get almost a straight line with the correct slope close to 2. In

Fig. 6, we plot the maximum tunneling current at zero external field as a function of

D, which was obtained for different w0 values. By looking at Fig. 4, one can obtain
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Fig. 4. Plot of the maximum tunneling current as a function of the external magnetic field for
three different values of w0 = 1.2 (rhombus), 2 (crosses), and 4 (squares).
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Fig. 5. Plot of the critical field Hc as a function of the inverse of the effective length 1/D obtained
from Fig. 2 for different w0.
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Fig. 6. Plot of the maximum tunneling current at H = 0 as a function of the effective length D
obtained from Fig. 2 for different w0.

Imax(0) as a function of w0. Again, we see in Fig. 6, a linear relation with a slope of

about 4.0 instead of w0, the horizontal axis is D(w0). This is expected since the area

over which the current tunnels is proportional to the effective Josephson length, D.

For larger w0, there will be deviations since the current enters the window from all

sides.
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4.2. Overlap geometry

In this case, we have Iin = 0 and Iov = I [see Fig. 1(b)]. Since in the idle region,

the function satisfies d2φ0(y)/dy
2 = 0, the boundary conditions at y = ±w0/2 can

be applied at the internal boundary (on y = ±w/2) and the solution for φ0(y) is

given by4,5:

sinφ0 =


2
√
mm1cd(y|m)nd(y|m) , |y| < w

2
,

sin

(
I

2

(
|y| − w

2

)
+ γ

)
,

w

2
< |y| < w0

2
,

(17)

where cd and nd are the elliptic functions with modulus m,8 which is determined

from the external current through the boundary condition,

2
√
mm1sd

(
w

2

∣∣∣∣m) =
I

2`
. (18)

The constant γ is determined by matching the solutions at the interface between the

idle and window regions, since the nonlinearity in the window completely determines

the solution inside.

The corresponding eigenmodes must be obtained numerically and in Fig. 7, we

plot the first four (n = 1− 4) for w0 = 4.0 and the maximum current that occurs

for H = 0.01. In comparing with Fig. 3, we see that the only difference is with the

lowest mode, except for an unimportant sign change. In this case, the lowest mode

is almost flat and its corresponding eigenvalue is very close to zero. This is because

the current is close to the maximum possible value in 1D, where an eigenfrequency
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X
n(

y)

Fig. 7. Eigenmodes Xn(y) with n = 1− 4 for the overlap geometry at the maximum current for
H = 0.01, and w0 = 4.
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Fig. 8. Plot of the maximum tunneling current as a function of the external magnetic field
(overlap geometry) for three different values of w0 = 1.2 (rhombus), 2 (crosses), and 4 (squares).

will vanish. If we lower the current, then we will approach the modes of Fig. 3 as

I → 0. The BC for the modal amplitudes are:

dAm

dx

∣∣∣∣
x=±`/2

= H

∫ w0/2

−w0/2

Xn(y)dy . (19)

In Fig. 8, we plot the maximum current for the overlap geometry with w0 = 1.2,

2.0, and 4.0, and the three curves coalesce at the same current for H = 0, since

for small w < 4, we do not expect saturation effects as in the inline geometry

(Fig. 4). The values for Hc should be exactly the same as for the inline geometry

and the small difference is, because in the overlap problem, the eigenmodes must

be determined numerically and for the sharp jump due to U(y), one needs a very

fine grid in discretizing the equations for the amplitudes An(x).

In a long junction with overlap current, the waveguide mode frequencies (at

k → 0) must be determined numerically. This was achieved by solving numerically

Eq. (8) with φ0(y) given by Eq. (17).

5. Linear Modes in the Absence of Current

In the absence of losses and driving terms, the small amplitude waves in a long

lateral window junction satisfy the equation,(
∂2
x + ∂2

y −
1

c2(y)
∂2
t

)
φ = −U(y)φ (20)

which differs from Eq. (1) by the capacitive term, which is different in the window

and idle region, i.e., the phase velocity c is y dependent. The phase velocity is
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assumed to have the form,

c(y) =

{
1 , in the window

ci , in the idle region
(21)

while U(y) is given in Eq. (2).

We should remark here that the introduction of the dynamic term −[1/c2(y)]∂2
t ,

with different velocities in the two regions does not alter significantly the static

properties of the junction. This is because the capacitance of the device depends

on the width d of the insulating layer as C ∝ (1/d), while the inductance L is

proportional to the magnetic thickness, i.e., L ∝ 2λL + d, where λL is the London

penetration depth. However, we consider the case λL � d and the influence on the

inductance variation is very small, and we neglect it.

We assume that we have traveling waves in the x-direction with: φ(x, y, t) ∝
φ̃(y) exp[i(kx− ωt)]. Inserting φ(x, y, t) into Eq. (20), gives,

φ̃yy = φ̃

(
−U(y) + k2 − ω2

c2(y)

)
(22)

with boundary conditions of vanishing current, φy(y = ± (w0/2)) = 0.

In the window U(y) = −1, c(y) = 1, thus, φ̃yy = (1 + k2 − ω2)φ̃ with solutions,

φ̃ ∝ exp(±qy) , where q2 = 1 + k2 − ω2 . (23)

Similarly, in the idle region, U(y) = 0, c(y) = ci, and φ̃yy = [k2 − (ω2/c2i )]φ̃, with

solutions,

φ̃ ∝ exp(±κy) , where κ2 = k2 − ω2

c2i
. (24)

The κ and q are the local wavenumbers, in the idle and window regions respectively.

They can be either real or imaginary.

To obtain the dispersion relation ω(k), we must also use the matching conditions

at the window — idle region interface (continuity of the phase φ and its derivative

with respect to y at the interface). From the symmetry of U(y) and c(y), we can

separate the normal modes into symmetric and antisymmetric modes.

(i) Symmetric case.

In this case, the solutions in the idle and window regions are:

Ψ0 = A0 cosh
[
κ
(
y − w0

2

)]
,

w

2
≤ y ≤ w0

2
,

Φ1 = A1 cosh(qy) , |y| ≤ w

2
.

From the matching interface conditions, we get the eigenvalue equation for ω(k),

given by:

q tanh
qw

2
= κ tanh

(
κ
w − w0

2

)
. (25)
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This is identical to Eq. (33) in the Appendix, if we put k = 0 in the expressions for

κ and q.

(ii) Antisymmetric case.

Similarly, we have,

Ψ0 = A0 cosh
[
κ
(
y − w0

2

)]
,

w

2
≤ y ≤ w0

2
,

Φ1 = A1 sinh(qy) , |y| ≤ w

2

and the corresponding result for the dispersion relation is given implicitly by:

q coth
qw

2
= κ tanh

(
κ
w− w0

2

)
. (26)

In the earlier analysis, these modes for k = 0 were not presented because the

phase difference φ(x, y) to be expanded was a symmetric in y (due to the boundary

conditions), and therefore, has no projection on antisymmetric modes.

Numerically, the dispersion relation is obtained by solving the equations,

S(k, ω) = 0 , A(k, ω) = 0

where,

S = q tanh
qw

2
− κ tanh

(
κ
w − w0

2

)
(27)

A = q coth
qw

2
− κ tanh

(
κ
w − w0

2

)
(28)

and we get the symmetric and antisymmetric branches correspondingly.

For w = w0 (no idle region), from S = 0 and A = 0, the dispersion relation is

given by, ω(k) =
√

1 + k2 + (nπ/w)2, where n = 0, 1, 2, 3, . . . . For relatively large

ω, the spacing between the modes at k = 0 is ∆ω = nπ/w. For w 6= w0, we must

solve numerically.

5.1. Size dependence at long wavelength frequencies ω(k = 0)

In Fig. 9, we show the dependence of ω at k = 0 on the total junction width

w0, for ci = 1 and w = 1. We see several branches ωn(k) as expected for this

complex waveguide structure, which as a function of w0 for k = 0, behave like

ωn(0) =
√

1 + (nπ/w0)2, where n is integer, when the idle region is small (i.e.,

w0 ' w). For large w0, we expect the idle region to determine the spectrum,

i.e., ωn(0) = ci(nπ/w0), and we plot these curves (solid lines) in Fig. 9. We see

that, indeed the agreement with the numerical curves is quite good except for the

lowest branches. Only for the low lying modes, we see differences with this simple

expression, since in that case the barrier in the window (created by the tunneling)

becomes significant there. Also, the agreement is better for the odd modes since in

that case, φ vanishes near the center so that the tunneling term does not contribute,
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Fig. 9. Frequency spectrum versus w0 at k = 0 with ci = 1 and w = 1. The solid curves are
given by ω = ciπn/w0, for n = 1, 2, . . . (n = 0 coincides with x-axis).

because the simple expression neglects the window tunneling. On the other hand,

for the even modes we expect the tunneling term to contribute.

In the case where ci 6= 1, things become more complicated. In Fig. 10, we

give the branches ωn = ωn(0) for ci = 2 and w = 1, as a function of w0 along

with the curves ωn = ci(nπ/w0), n = 1, 2, . . . , 10, which is the result when the

window can be neglected. As one can see in this figure, some branches fit very well

in the curves with n odd. These branches correspond to the antisymmetric modes.

The branches corresponding to the symmetric modes, as w0 increases, they leave

the curves ω = ci(nπ/w0), n even, moving toward the antisymmetric branches. For

very large w0, they eventually coincide. This can be seen from Eqs. (27) and (28).

For w0 very large, we can neglect w in the argument of the second term of the right

hand side of Eq. (27). Thus, we get, for the symmetric modes,

q tanh
qw

2
− κ̃ tan

(
κ̃
w0

2

)
= 0 . (29)

Then, we define the small parameter ε = 1/w0 and assume that κ̃ = [(2n+ 1)π +

δ]/w0, where δ is assumed to be a small number, which in fact depends on w0 as

δ ∼ 1/w0 (so it is of the same order as ε). We assume that κ̃ for the symmetric

2n mode is very close to the value for the antisymmetric 2n+ 1 mode as suggested

by the numerical results and we check for consistency in order to determine δ. We

rewrite κ̃ as κ̃ = ε(π+ δ) for the choice of n = 0 and one can get the similar results

for every n. Then from Eq. (23) and the value for κ̃ above, we get q ' 1−(c2i ε
2π2/2).
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Fig. 10. Frequency spectrum versus w0 at k = 0 with ci = 2 and w = 1. The curves shown are
given by ω = ciπn/w0, for n integer. Solid curves: n odd, dashed curves: n even.

We expand tanh(qw/2) around q = 1 in powers of the small quantity c2i ε
2π2/2, and

we get,

tanh
qw

2
' tanh

w

2
− wc2i ε

2π2

4
sech2w

2
.

The expansion of tan(κ̃w0/2) gives,

tan

(
κ̃w0

2

)
' −2

δ

(
1− δ2

12

)
.

Introducing the expressions for κ̃, q, tanh(qw/2), tan(κ̃w/2) into Eq. (29), and

keeping the terms up to first order in ε, δ and their combinations, we get,

δs ' −
2επ

tanh
w

2

.

Following the same steps, we get from Eq. (28) for the antisymmetric modes that:

δa ' −2επ tanh
w

2
.

These results are consistent with our assumption that both δ ∼ 1/w0. Both solutions

are negative, in agreement with the numerical data, while the antisymmetric is

closer to the curve ω = ciπ/w0. When w0 →∞, the two solutions coincide, and ω

gets exactly the value ciπ/w0.
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Fig. 11. Frequency spectrum versus w0 as in Fig. 10 but on a different scale.

In Fig. 11, we show the branches ωn = ωn(0) for the parameters we used in

the previous figure, but on a different scale. Here, one can see that the picture is

rather complicated, since there is some interaction among the various branches.

Apparently, the branches attract and repel each other. Thus, two branches show a

maximum and minimum distance at specific points, which depend on the velocity

ci. In Fig. 12, we show a rather extreme case, ci = 100, where there is high velocity

contrast in the two (window and idle) regions. Here, the branches ω = ω(0) are flat

everywhere (independent of w0) and ω(0) =
√

1 + (nπ/w)2, n = 0, 1, 2, . . . , except

close to the curves ω = cimπ/(w0 − w), where m is odd integer. Close to these

resonance curves, there is a sudden change. By approaching the first resonance

curve (m = 1), a branch, say ωn(0), decreases fast. It crosses the resonant curve,

still decreasing, and then it takes the position of the ωn−2(0) branch, becoming flat

again (until it reaches the second resonance curve where it becomes ωn−4(0), and so

on). This can be seen more clearly in Fig. 13, which is a magnified part of Fig. 12.

Here, only three branches for clarity, those for n = 7, 8, and 9 are shown. The

curve ω = ciπ/(w0−w) crosses the three branches each at a single point. This point

is located at a specific w0, which is given by:

ci
mπ

w0 − w
=

√
1 +

(nπ
w

)2

.
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Fig. 12. Frequency spectrum versus w0. ci = 100, w = 1, and k = 0. The curves shown are given
by ω = cimπ/(w0 − w). The resonance curves correspond to m odd.
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Fig. 13. Frequency spectrum versus w0 as in Fig. 12 but on finer scale. Solid curve: n = 7, dashed
curve: n = 8, long-dashed curve: n = 9, and dotted curve: ω = ciπ(w0 − w)(m = 1).

Near these crossing points, the slope of the dispersion curve is almost the same as

that of the resonance curves. The resonance point with the lowest frequency ω is

shown in Fig. 14. This is at w0 ' 314, for these parameters. We should also note

that each time a branch ωn(0) crosses a resonance curve, two of the nodes of the
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Fig. 14. Frequency spectrum versus w0 as in Fig. 12 but for large w0. The curves shown are
given by ω = cimπ/(w0 − w). The resonance curves correspond to m odd (they are completely

covered by the points).

corresponding eigenmode leave the window region and appear in the idle region.

We also plot (solid lines) the modes ωn = cinπ/(w0 −w) which for odd n, coincide

with the numerical results in the scale used, and are not seen.

5.2. Wavevector dependence ω(k)

Now, we turn to the dependence of ω on k. We choose w0 = 2, w = 1, and look at

four different values of the velocity ci which correspond to four different patterns.

In Fig. 15, the velocity ci = 0.5. Below the line ω = k where q is real, the symmetric

and antisymmetric branches coincide. Not very far, but below this line, q is large

enough that tanhq can be considered to be practically unity. Then, the equations

S = 0 and A = 0 give indeed identical solutions, as seen in Eqs. (27) and (28). Below

ω = k, the branches ω = ω(k) fit with the curves ω(k) = ci
√
k2 + κ̃2

n, where κ̃n is

approximately given by βk ' κ̃n tan(κ̃n/2), and β =
√

1− c2i . The point ci = 0.5 is

a particular one, where the frequencies at k = 0 are grouped three together (except

the lowest two), the middle of which is at ω = nπ with n = 1, 2, 3, . . . , where

odd (even) n corresponds to antisymmetric (symmetric) modes. The two neighbors

(which are of opposite symmetry from the central one) are given approximately by

tanω = ±c, where in this case c ' 1.118.



June 13, 2000 9:57 WSPC/141-IJMPC 0280

Static Properties and Modes Waveguide of Josephson Junction 513

0 5 10 15 20 25
k

0

5

10

15

20

25

ω

Fig. 15. Frequency spectrum versus k. ci = 0.5, w = 1, and w0 = 2.
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Fig. 16. Frequency spectrum versus k. ci = 1, w = 1, and w0 = 2. The solid curves are given by
ωn(k) =

√
1 + k2 + q̃2, where q̃ = (nπ/w0).
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In Fig. 16, the velocity is ci = 1. If we assume that q̃nw + κ̃n(w0 − w) = nπ,

where n is integer and the κ̃ and q̃ are defined as κ = iκ̃ and q = iq̃ respectively,

then we get from S = 0 and A = 0 so that,

q̃ '


2nπ

w0

(2n+ 1)π

w0

respectively, for relatively large ω. Then ω(k) =
√

1 + k2 + q̃2.

In Fig. 17, ci = 2. In the same way as in the case where ci = 0.5, we can

assume that little below the line ω = cik where κ is real, it is also large enough that

tanh(κ/2) = 1. Then, ω(k) =
√

1 + k2 + q̃2, where q̃ is given by (approximately)

tan q̃w ' −2q̃/k[1− (1/c2i )]. Here, one can also prove that the slope of the branches

at the resonance points [that is, where 1 + k2 + q̃2 = c2i (k
2 + κ̃2

n)] is equal to ci.

In this case, the symmetric and the antisymmetric solutions do not merge at high

k. The solid line shown in the figure is ω(k) = ci
√
k2 + [π/(w0 − w)]2. Finally, in

Fig. 18, the velocity is ci = 100. Here, the branches change smoothly, and at k = 0,

the frequencies are ω(0) =
√

1 + (nπ/w)2, where n = 0, 1, 2, . . . .
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Fig. 17. Frequency spectrum versus k. ci = 2, w = 1, and w0 = 2. The solid line is given by
ω =

√
k2 + [π/(w0 −w)]2.
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Fig. 18. Frequency spectrum versus k. ci = 100, w = 1, and w0 = 2.

6. Conclusion

We presented an efficient procedure to evaluate the electromagnetic response of a

lateral window device, which can be considered as a coupled system of an active

waveguide (tunneling window) and a passive one (idle region with no tunneling).

We see that the effect of the passive region is to change the characteristic length

for flux variation. We compared with simple estimates for the fluxon width and the

effective length. The procedure can be extended to relatively large w0 without a

considerable increase in the number of modes in the expansion. The introduction of

the auxiliary function φ0 and the linearized mode expansion reduces the solution of

a PDE problem into a small system of ODE’s. We see that in the inline geometry, the

maximum current increases linearly with the characteristic length and the critical

magnetic field inversely with it. For the overlap geometry, the critical magnetic field

is the same as in the inline, while the Imax(0) is independent of w0. We also see

that the eigenvalues in the problem for the expansion modes Xn(y) correspond to

the squared frequency of the long wavelength waveguide modes. These frequencies

vary with the overlap bias current.

We gave the dispersion relation for the waveguide modes and presented a simple

explanation for its variation with the geometric parameters. This is done for the

case where we have a variation normal to the waveguide, both of the critical current
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and the linear Swihart velocity. The calculations can be easily extended to the case

where we have an overlap current. In that case, the linear waves are perturbations

around φ0(y), which is given implicitly in Eq. (17). The modes are given by the

eigenvalue problem in Eq. (8). Now, we have the possibility to strongly modify the

lowest branches of the dispersion and in a way that is of interest for applications.

One of the properties of this waveguide structure is to act as a high pass filter

with a lower cutoff at ω1(k = 0), i.e., no waves can propagate for ω < ω1(0). In

this case, the cutoff which depends on the geometry can also be varied with the

overlap bias current in a continuous way. In fact, if we use the maximum overlap

current at H = 0, then there is no low frequency gap in the spectrum. In our

study, we have considered the case of zero damping which is a realistic assumption

for temperatures much lower than the critical temperature. At high frequencies, a

small damping can be taken into account by considering a complex propagation

parameter with a small imaginary part. This will be a weak perturbation on the

spectrum results.
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Appendix

In the case that φ0 = 0, we must solve the eigenvalue problem,

−X ′′n(y)− U(y)Xn = λnXn , (30)

in the range yε[−(w0/2), (w0/2)] with the BC,

dXn

dy

∣∣∣∣
±w0/2

= 0 . (31)

For λ < 1, we put λn = κ2
n and write the solution in the window and idle region

(assuming y-symmetry) as:

XW
n (y) = A1 cosh(

√
1− κ2

ny)|y| ≤ w/2 ,

XI
n(y) = A2 cos[κn(|y| − w0/2)]w/2 ≤ |y| ≤ w0/2

(32)

Matching at the interface on y = ±w/2, gives the equation for the eigenvalues,√
1− κ2

n tanh
(√

1− κ2
n

w

2

)
= −κn tan

[κn
2

(w − w0)
]

(33)
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while normalizing we have,

A1 =

1

2

w +
sinh(Cnw)

Cn
+

cosh
(
Cn

w

2

)
cos(κnw′)

2 (
2w′ +

1

κn
sin(2κnw

′)

)

−1/2

(34)

A2 = A1

cosh
(
Cn

w

2

)
cos(κnw′)

 , (35)

with,

w′ =
w0 − w

2
and Cn =

√
1− κ2

n .

For λ > 1, we can obtain directly by letting
√

1− κ2
n →

√
κ2
n − 1 and cosh→

cos, sinh→ sin, tanh→ tan.

If the value of φ0 = π is chosen, then we have a change of sign in the term with

U(y), which now acts like a well. All the previous expressions can be taken by a

simple analytic continuation. The convergence for φ0 = 0, however is much faster.
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