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Abstract. Sequential lists are a frequently used data structure for im-
plementing dictionaries. Recently, self-organizing sequential lists have
been proposed for “engines” in efficient data compression algorithms. In
this paper, we investigate the problem of list accessingfrom the perspec-
tive of competitive analysis. We establish a connection between random-
ized list accessing algorithms and Markov chains, and present Markov-
Move-To-Front, a family of randomized algorithms. To every finite, ir-
reducible Markov chain corresponds a member of the family. The fam-
ily includes as members well known algorithms such as Move-To-Front,
Random-Move-To-Front, Counter, and Random-Resel.

First we analyze Markov-Move-To-Front in the standard model, and
present upper and lower bounds that depend only on two parameters
of the underlying Markov chain. Then we apply the bounds to particular
members of the family. The bounds that we get are at least as good as
the known bounds. Furthermore, for some algorithms we obtain bounds
that, to our knowledge, are new.

We also analyze Markov-Mouve-To-Frontin the paid exchange model. In
this model, the cost of an element transposition is always paid, and costs
d. We prove upper and lower bounds that are relatively tight. Again, we
apply the bounds to known algorithms such as Random-Move-To-Front
and Counter. In both cases, the upper and lower bounds match as the
parameter d tends to infinity.

1 Introduction

In this paper we consider the static list accessing (also known as the list update)
problem. The problem is to maintain an unsorted list of items in such a way
that the cost of successive accesses i1s kept small. More specifically, an initial
list of items is given, and a request sequence is generated. A request specifies
an item in the list, and is serviced by accessing the item. In the on-line setting,
each request has to be serviced before the next request is made known. The
cost incurred by an access to an item is equal to the position of the element in
the current list (as maintained by the on-line algorithm). In order to reduce the
cost of future requests, the algorithm is allowed to reorganize the list between
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requests. One can view this reorganization as a sequence of exchanges between
consecutive items in the list. The cost of such a rearrangement is measured in
terms of the minimum number of exchanges needed for the rearrangement. We
will consider two different cost models for the exchanges that are performed in
order to rearrange the list. In the standard model, the algorithm may move the
item just accessed to a position closer to the front of the list free of charge. Those
exchanges are called free. All other exchanges are called paid, and cost 1 each. In
the paid exchange model every exchange has a cost. One can justify the absence
of free transposition, if one thinks of the list as an unsorted array. In order to
move an item in the list, we have to perform a series of transpositions. The
constant d is typically greater than 1, and reflects the fact that link traversals
and exchanges are different operations, and therefore may have a different cost.

1.1 Competitive Analysis

For the analysis of on-line algorithms, we use competitive analysis [9]. In this
framework, the on-line algorithm is compared with an optimal off-line algorithm.
An optimal off-line algorithm knows the entire request sequence in advance, and
can make optimal choices incurring minimum cost. The performance measure of
the on-line algorithm is the competitive ratio.

Definition1l. A deterministic on-line algorithm ALG is said to be c-competitive,
if there exists a constant « such that for every request sequence o,

ALG(0) <¢-OPT(0) + a.

where OPT(o) is the cost incurred by an optimal off-line algorithm with full
knowledge of the request sequence o. The competitive ratio of ALG, denoted by
R(ALG) is the infimum of ¢, such that ALG is c-competitive.

A useful way to view the problem of analyzing an on-line algorithm is as a
game between an on-line player and a cruel adversary [3]. The on-line player runs
the on-line algorithm that services the request sequence created by the adversary.
The adversary, on the other hand, based on knowledge of the algorithm used by
the on-line player, constructs the input that maximizes the competitive ratio.
Usually, we identify the adversary and the off-line algorithm, and think of it
as the off-line player. For randomized algorithms, the knowledge on which the
adversary bases the construction of the cruel sequence is important. In this work
we consider only oblivious adversaries, which are allowed to examine the on-line
algorithm, but have to generate the entire request sequence in advance, without
any knowledge of the random bits of the on-line player. The adversary services
the request sequence off-line, incurring the optimal off-line cost.

Definition2. A randomized on-line algorithm ALG is said to be c-competitive
against an oblivious adversary, if there exists a constant a such that for every
request sequence o generated as described above,

E[ALG(0)] < ¢-OPT(0)+ «
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where OPT(o) is the cost incurred by an optimal off-line algorithm on ¢, and
the expectation is taken over the random choices made by ALG. The infimum of
c, such that ALG is c-competitive, is called the competitive ratio of ALG against
an oblivious adversary, and is denoted by Ropr(ALG).

1.2 Competitive Algorithms

Sleator and Tarjan [9] have shown that the well-known deterministic Move-To-
Front algorithm (MTF) is 2-competitive. Karp and Raghavan then observed that
no deterministic list accessing algorithm can be better than 2-competitive, and
therefore MTF is competitive-optimal. Later, Albers [1] presented Timestamp,
and proved that it is also 2-competitive. In 1996, El-Yaniv [5] presented an
infinite family of optimal deterministic algorithms, and showed that MTF and
Timestamp are members of this family.

While the best performance of deterministic on-line algorithms is known, this
is not the case for randomized algorithms against oblivious adversaries. Irani
[6, 7] gave the first randomized list-accessing algorithm, SPLIT, and proved it to
be %—competitive7 thus beating the deterministic lower bound. Then Reingold,
Westbrook, and Sleator [8] presented two families of randomized algorithms,
Counter and Random-Reset. The best member of the two families achieves a
competitive ratio of v/3, and for several years it was the best randomized list
accessing algorithm known. Later, Albers [1] presented Timestamp(p), a ran-

domized algorithm whose competitive ratio is the golden ratio % Finally, in
1995, Albers et al. [2] gave the Combination algorithm that is 1.6-competitive,
the best upper bound known so far. The best lower bound known for the prob-
lem is due to Teia [10]. He proved that no randomized algorithm can be better
than 1.5-competitive.

The paid exchange model, which was also defined in [9], received much less
attention than the standard model. Most of the results concerning this model
were given by Reingold, Westbrook, and Sleator in [8]. The best known deter-
ministic algorithm, due to Reingold, Westbrook, and Sleator is 5-competitive,
independent of d, while the best known deterministic lower bound is 3, [8]. In
the same paper, the authors considered the Random-Reset algorithm in the paid
exchange model, and were able to beat the deterministic lower bound. As ex-
pected, for each value of d, there is a different member of the family that has
a better performance. Quite surprisingly though, the competitive ratio starts
from 2.64 (for d = 1), and drops as d grows. No lower bound against oblivious
adversaries is known for this model.

1.3 Results

The work in [8] suggests that a greedy algorithm, in the sense that the decision
“where to place” the requested item is made without considering any other item,
can attain a good competitive ratio. In the present work we further exploit such
greedy algorithms. We establish a connection between randomized list accessing
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algorithms and Markov chains. To every finite, irreducible Markov chain corre-
sponds a list accessing algorithm. We name this family of randomized algorithms
Markov-Move-To-Front(MMTF). We consider Markov-Move-To-Front in both
the standard and the paid exchange models, and prove upper and lower bounds
for its competitive ratio (against an oblivious adversary) that depend only on
two parameters of the underlying Markov chain: 7, the stationary probabil-
ity of state 0, and S, the expected time to hit state 0, when in the stationary
distribution.

The Markov-Move-To-Front family includes many well-known algorithms
such as Move-To-Front, BIT, Random-Move-To-Front, the Counter and the
Random-Reset families. The bounds we achieve are at least as good as the known
bounds, thus in this aspect Markov-Move-To-Front presents a unified analysis for
a wide class of interesting algorithms. Furthermore, the application of the gen-
eral bounds to specific members of the family — such as Random-Move-To-Front
and Random-Reset — yield some new, to our knowledge, results.

2 The MMTF Family

We introduce a family of algorithms that simplify the decision where to place the
item just requested to when to move it to front. The engine of each algorithm
is a Markov Chain M with a finite set of states Sy = {0,1,...,s}. A copy of
the Markov chain is associated with each item in the list. The initialization of
the Markov chains is made according the stationary distribution, and therefore,
they will remain at the stationary distribution thereafter.

MMTF algorithm: Upon a request for item z, serve the request, and then
make a step in the Markov chain associated with x. If the state at which the
algorithm just arrived is 0 move z to front; otherwise do nothing.

Note that MMTF is not a mixed strategy, i.e., it is not a distribution over a set
of deterministic algorithms, but it is rather a behavioral randomized algorithm

[4].

3 The Standard Model

In this section we analyze the MMTF family in the standard model, and obtain
upper and lower bounds against oblivious adversaries.

3.1 Upper Bound

For all the upper bounds in this paper we use the potential function method.
Potential function arguments are quite common in the analysis of deterministic
algorithms. In the randomized setting the same argument holds with some small
adjustments. Let & be a potential function, and consider an event sequence
€1,€9,...,6e,. Let @; be the value of @ after the ith event. @g is the value of
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@ before the first event. Also let ALG and OPT be the on-line and optimal
off-line algorithms respectively. Denote by ALG,; (OPT;) the cost incurred by
ALG (OPT) during the ith event, and define the amortized cost of ALG during
the ith event to be a; = ALG; + ®; — ®;_1. Then we can prove the following
lemma, where all the expectations are taken over the random choices made by
the on-line algorithm'.

Lemma 3. Suppose there exists a constant ¢ such that, with respect to all pos-
sible event sequences, for each event e;, FEla;] < ¢- OPT;, and E[®] is lower
bounded by some constant. Then ALG s c-competitive against an oblivious ad-
versary.

Let M be an irreducible Markov Chain with set of states Sy = {0, 1, ..., s},
and transition probabilities P = (p;;) that has a stationary distribution = =
(mo, m1, ..., ). For 4,j € Spr, hy; is the hitting time from state i to state j in
M. In our analysis, the hitting time to state 0 is of special interest, therefore
for brevity we denote by h; the hitting time h;o 2. By S we denote the expected
hitting time to state 0, i.e, S =Y ;_, mih;.

Theorem4. Let M be an irreducible Markov Chain that has a steady-state dis-
tribution m = (mg, m1, ..., ), and transition probabilities P = (p;;). The MMTF
algorithm that operates on M has competitive ratio that is upper bounded by
max{l + 7S5, S}.

Proof. We start by defining the notion of an inversion. An inversion is an ordered
pair (y,z) of items such that z appears before y in OPT’s list, but it appears
after y in the list maintained by MMTF (i.e., the pair indicates the relative order
of the items in the on-line algorithm’s list). We define the type T'(z) of an item
z, whose Markov chain is at state 7, to be the hitting time h;. The type of an
inversion (y, ) is then defined to be the type of z. As our potential function, we
define @ = " T(z), where the sum is taken over all inversions (y, z).

Consider now a request for item z, and assume that z is in position k& in
OPT’s list. We will distinguish between two types of events. One is the service
of the request by OPT and MMTF, including the possible free exchanges. The
other is a paid exchange made by OPT.

Event 1: The cost of OPT for this event is k. The amortized cost of MMTF is
a=MMTF+AP < k+ R+ A+ B+C, where R is the number of inversions (y, z)
at the time of the access, A is the change in the potential due to new inversions
created, B is the change in the potential due to old inversions destroyed, and
C'is the change in the potential due to old inversions that change type. For the
rest of the proof we will fix the value of R to r. Suppose that the state of =

! We consider finite request sequences of any length n. The algorithm uses a constant

number, say ¢, of random bits to serve each request, therefore the total number of
random bits needed to serve the whole request sequence is c¢n. The expectations are
taken over those random strings of length cn.

2 Recall that h;; is the expected time to return to state i. Therefore hg = hoo > 0.
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before the access is I = i, and after the access it is J = j. There are two cases
to consider.

Case 1: If j = 0 then z is moved to front. In that case, exactly r inversions
(y, z) are destroyed. The type of  was h;. So B = —rh;. Since there are no old
inversions that change type, C' = 0 and therefore

E[R+B+C|I=iJ=0=r—rh;.

Case 2: If j # 0 then z is not moved to front. In that case, no inversions are
destroyed, so B = 0. But because of the change of z’s type, some inversions
(y, z) might change type. The change in the potential due to this change is
C =r(hj — h;), so that

E[R+B+C|I=iJ=j#0]=r+r(hj—h).

And therefore, we can compute E[R + B + (] as

S>3 E[R+B+C|I=iJ=jPr(I=iJ =)

i=0 j=0

=Y E[R+B+C|I=iJ=0Pr(I=iJ=0)+

=0

YD E[R+B+C|I=i,J=jPr(I=i,J=j)

i=0j=1

=Y mipior(l—hi) + Y m Yy pijr(L+hj —hi)
i=0 i=0 7j=1

S S S B
=r Y m(pio — pichi + Y _pij + Y _ pijhi — Y pijhi)
=0 7j=1 7j=1 j=1

s

=rY m(l—hi+) pijhy)
=0 j=1

K3

=r(1=S+> h;»_ mpij)
j=1 =0

=r(=S+)_ mh;)
7=0
=0

We turn now to the estimation of E[A]. Assume that after servicing the
request, OPT moves x forward to position k’. Let y;, : = 1, ..., k— 1 be the items
that preceded z in OPT’s list before the access. Finally, let ¥; be a random
variable that measures the change in the potential due to each pair {y;,z}.
Again we consider the same two cases as above.

Case 1: If j = 0, i.e,  is moved to front, then k&’ — 1 new inversions are created
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({z,11),...,{x,yp—1)). Since each element in the list has its own copy of the
Markov chain, each of the above inversions has expected type Y ;_, mh; = S, so

[ Sfor1<j<k -1
E[YJ]—{O for k' < j<k—1
In that case we can compute

k'—1

k—1
E[A | casel] = Z E[Y;] = E S =

Case 2: If j # 0, i.e., z is not moved, then at most k — k' new inversions are
created due to the move by OPT ({yx, z), ..., {yk—1, z)). The expected type of z
1s Zle mih; =S —1, so

/0 for1<j<k'-1
E[Yj]_{S—lfork’gjgk—l

- k-1

E[A | case2] < Z => (S-1)=(k—Fk)(S—1)

7j=1 j=k'
Case 1 occurs with probability 7, and case 2 with probability 1 — my. Hence,
E[A] is at most
mo(k' — 1)S + (1 — mo)(k — k') (S — 1)
= (1 + 271'05 - S— 71'0)]&’/ + (1 - 71'0)(5 - 1)]{7 - 71'05
E[A] is a linear function of k¥’ and achieves a maximum either for k' = 1, or
for k' = k — 1 (depending on the coefficient of k). Therefore, E[A] < max{(1 —

m0)(S—1), m0S} k. We are able now to compute an upper bound for the amortized
cost for the request for z.

Ela) < Elk+ R+ A+ B+ C]
=k+ E[R+ B+ C]+ E[A]
< (14 max{(1 — m)(S — 1), mS}) - k
=max{l+ (1 —m)(S —1),1+ mS} -OPT

Event 2: A paid exchange made by OPT can create at most one inversion. The
type of the inversion is Y ;_, m;h; = S on the average. On the other hand OPT
pays 1 for the exchange. Hence

ElaJ=S-1=5 OPT
Combining event 1 and event 2 we obtain
Ropr.(MMTF) < max{l+ (1 —m)(S—1),1 4+ mS, S}.
In order to eliminate the term 1+ (1 — mg)(S — 1) notice that
S>1 = S>14(1-m)(S—1)
Therefore, Ropr, (M MTF) < max{l 4+ mS, S}.
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3.2 Lower Bound

We will determine now a lower bound for MMTF that operates an any Markov
chain M. As it will become clear, the lower bound is non-trivial only for Markov
chains with .S > %

Theorem 5. Let MM TF operate on a Markov chain M. ThenVe > 0, Ropr,(MMTF) >
S —e.

Proof. We will prove the theorem by describing a request sequence that enforces
the above lower bound. More specifically, we will show that for any given € > 0,
there exists a sufficiently large list, such that E{]M MTF(c)] > (S—¢)- MTF (o).

Assume that the initial configuration of MTF’s list is (z1, 22, ..., #¢) with z;
at the front, and at the same time MMTF’s list is a permutation p, i.e., for
each i, 1 < i < £ the item z; is at position p(i) in MMTF’s list. Let k£ be some
integer whose value will be determined later, and consider the following request
sequence:

o= (ml)k, (sz)k, . (mg)k.

The cost incurred by MTF is

(e+1)
2

MTF(o)= (1424 ..+8) +4k—1) = Lk —1).

MMTF, on the other hand, will move each requested item to front every S
requests on the average, so its expected cost E[M MTF (o)] is at most

(p(1)S + p(2)S + ...+ p(£)S) + £(k — S)
o+ 1)
2

=S + Lk =15)

because, when MMTF services a request for z;, the fact that it is (eventually)
moved to front does not affect future requests for elements that are behind z; in
the list, but it does make a difference for elements that are positioned in front
of z;. The cost to access those elements increases by one because of the move-
to-front action. Thus the cost of p(i) attributed to the S first requests for z;
is clearly a lower bound of the expected cost. Note, that the right hand side of
the above inequality is independent of the initial configuration of MMTF’s list.
Then

E[MMTF(c)] _ SE(£+1)+ 26(k — S)
MTF(c) 0+ 1)+ 20(k—1)
S+ 9k=5

_ T

14251
If we choose £ > k, formally if we let % — 0, then the ratio goes to S
E[MMTF (o))

MTFo)  ° (1)
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By definition, 1 means that

E[MMTF(c)]
Ve>0 S—e< ———=<S
‘ ST MTF(0) te
The left inequality gives the lower bound. To complete the proof, it remains to
say that this procedure can be repeated enough times to outweigh any additive
constant.

It is interesting to mention here that the above result is not only expected, but
also occurs with high probability. In order for MMTF to incur a (significantly)
different cost, it has to move the requested elements to front with significantly
different rate, than once every S requests. That is, the time 7T to hit state 0 has
to deviate from its expected value E[Ty] = S. From Chebyshev’s inequality for
the random variable T we get the high probability result, namely

S

Pr(|To - S |> —) <4.
7“(|0 |_\/()—-)_

3.3 Some Members of the Family

In this section, we present some well-known algorithms that are members of the
MMTF family, and we apply the general bounds of the previous sections.

Random-Move-To-Front(p). RMTF(p) algorithm works as follows. Upon a
request for an item z, RMTF(p) serves the request, and then with probability
p moves z to front. For p = 0, items are never moved, so RMTF(0) clearly does

not achieve a bounded competitive ratio. We can prove the following theorem?.

Theorem 6. Let 0 < p < 1. Then Il—) < RoprL(RMTF(p)) < max{2, %}

Proof. RMTF(p) can be formulated as an MMTF algorithm that operates on
the simple two-state Markov Chain shown in Figure 1.
The transition matrix of the chain is the following

P:<p1—p)
pl—p

Tt is not difficult to see that for this Markov chain (mg,m) = (p,1 — p), and
hg = hy = zl?' Therefore, S = mohg + mh1 = %. We can now apply Theorem 4
and Theorem 5 to obtain the result.

Counter(k, {0}) family. The Counter(k,{0}) family, presented by N. Rein-
gold, J. Westbrook, and D. Sleator [8], is a special case of the MMTF family.
The upper bound of Theorem 4 when applied to this subclass of algorithms
gives the same bounds as computed by Reingold et al.

% J. Westbrook has obtained a better bound for RMTF, namely max{}%7 ﬁ}
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1—p

1—pC P

p

Fig. 1. The Markov chain for RMTF

A good two-state algorithm. Consider now the general form of a two-state
algorithm, shown in Figure 2, with transition matrix

(71
p 1-p

The vector of the stationary probabilities of the above chain is (g, m1) =

p q Tt ; — ptq —_ 1 —
(p+q’ p+q), an.d the hitting times are hy = > and h; = > therefore S =
1+ —%—. Using Theorem 4, we can express now an upper bound on the com-

petigi(\]/?;qr)atio as a function of p and q. Interestingly enough, it turns out that
the optimal® values are p = ¢ = 1, i.e., under our analysis the best two-state
algorithm is BIT (introduced by Reingold, Westbrook, and Sleator [8]), which
achieves a competitive ratio of 1.75. Recall that BIT is randomized because the
starting state is randomly chosen. BIT is a good example of a mixed randomized
strategy. It is a distribution over two deterministic algorithms: one that starts
at state 0, and moves an element to front every second time it is requested, and
one that starts at state 1, and moves an element to front every second time it is
requested. RMTF (p), on the other hand, is a behavioral randomized algorithm.
The behavior of the two algorithms is quite different ® | and, as shown in the
previous sections, the mixed strategy (i.e., BIT) achieves a better competitive
ratio than the behavioral algorithm (i.e., RMTF(p) for p < %) For a discus-
sion on the differences between mixed and behavioral randomized strategies, the
reader is referred to [4].

Random-Reset. In [8], Reingold et al., argued that the best possible member
of their Random-Reset family has three states, and they determined the best
choice for the probabilities to reset to state 1 and to state 2. Subsequently, they
proved an upper bound of /3 for the competitive ratio of this particular mem-
ber. For many years this was the best randomized algorithm for list accessing
known (see Figure 3). Tt is interesting to see now, that this algorithm is a mem-
ber of the MMTF family, and its analysis follows from the general analysis. In
particular, for this algorithm S = /3, and also 1 4+ 7S = /3, and therefore,

* optimal under this analysis.

5 J. Westbrook was the first to point out the difference in the behavior of the two
algorithms, and proved that for p = 2 the competitive ratio of RMTF is lower
bounded by 2, and thus worse than the competitive ratio of BIT.



IXTEX style file for Lecture Notes in Computer Science — documentation 11

q

I-p 1-¢q

p

Fig.2. The MMTF with two states

from theorems 4 and 5 we conclude that /3 is both an upper and a lower
bound, and therefore the competitive ratio of this algorithm.

Fig. 3. The optimal Random-Reset algorithm

4 Paid Exchange Model

It is possible to prove similar upper and lower bounds for the performance of
MMTF in the paid exchange model. Recall that in this cost model, every ex-
change has a cost d, where d is a constant typically greater than 1. Again, as in
the standard model, the cost of accessing the ith item in the list costs .

4.1 Upper Bound

Let M be an irreducible Markov chain with transition probabilities P = (p;;),
and a stationary distribution m = (mq, m1, ..., m5). S = Y i_, mih; as in the previ-
ous section. Then we can prove the following theorem.

Theorem 7. The MMTF algorithm that operates on M has competitive ratio
that is upper bounded by max{l + mg(2d + S),1 + %}

Proof. The analysis is very similar to that for the standard model. The notions of
the inversion and the type of an inversion are defined as in the proof of Theorem
4. We define now our potential function to be & = >~ (d+ T'(z)), where the sum
is taken over all inversions (y, z). Intuitively, 7'(z) pays for the increased access
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cost because of the inversion, and d pays for the cost of removing the inversion,
when the item is moved to front.

Consider a request for item z, which 1s at position £ in OPT’s list. In this
model, since all exchanges are paid, the types of events we consider are slightly
different. The first type is the service of a request by MMTF or OPT, and the
exchanges made by MMTF. The second type is an exchange made by OPT.
Event 1: OPT will pay k to service this request. The amortized cost for MMTF
isa=MMTF+ A® <k+ R+ A+ B+ C+ D, where R is the number of
inversions of the form (y,z) at the time of the access, A is the change in the
potential due to new inversions created, B is the change in the potential due to
old inversions destroyed, C' is the change in the potential due to old inversions
that change type, and D is the cost of (paid) exchanges made by MMTF. For
the rest of the proof we will fix the value of R to r.

Suppose that the state of z is I = 7 before the access and J = j after the
access. We consider the following two cases:

Case 1: j = 0, so z is moved to front. In this case exactly r inversions of the
form (y, z) are destroyed. The type of z was h;, so B = —r(d+h;). There are not
any old inversions that change type, so C' = 0. Also, D < (k + r — 1)d. Finally,
at most £ — 1 new inversions of the form (z, y) are created. Each such inversion

has expected type Y ;_,mih; = S, s0 A < (k—1)(d + S). Therefore,
E[R+A+B+C+D|I=iJ=0]<r(l—h)+(k—1)2d+5)

Case 2: j # 0, so z is not moved to front. In this case no new inversions are
created, and no old inversions are destroyed, so A = 0 and B = 0. However, z
might change type, causing a change of type to the old inversions of the form
(y, z). The change in the potential due to this change is C' = r(h; — h;). Also,
D =0, since MMTF does not perform any exchanges.

E[R+A+B+C+D|I=iJ=j#0=r+r(h;—h)

We can now see that the expected value of R+ A+ B + C' + D equals

Y E[R+A+B+C+D|I=iJ=0mpo+

=0

ZZE[R+A+B—|—C+D|f:i,J:j]7Tz’Pij

i=0 j=1
= mpio(r(1 = hi) + (k= 1)(2d + S)) +
=0
Z T Zpijr(l + hj — hl)
=0 j=1

= ’P(Z mipio(1 — hi) + Zﬂi Epij(l + hj — hi)) +
i=0 =0 j=1
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Zs:ﬂ'ipio(k — 1)(2d—l— S)

=0

Note that the expression r is multiplied with is the same as in the previous
section, and is identically 0, therefore

E[R+A+B+C+ D= mpio(k—1)(2d+5)

=0

= (k—1)(2d +5) Zmpio
=0

=mo(k—1)(2d+ 5)
We can now bind the amortized cost of MMTF for this event:
Ela] <k+ E[R+ A+ B+ C+ D] < k[l + m(2d + S)]

Event 2: A transposition by OPT can create at most one inversion. The ex-
pected change in the potential due to that inversion is at most

s

Em(d+hi):d+i:mhi:d+5

=0 =0
On the other hand, OPT pays d. Therefore,

E[a]:E[A@]Sd—I—S:(1+§)~d:(1+§)~OPT

From the above we conclude that the competitive ratio of MMTF against an
oblivious adversary is upper bounded by max{1 + mo(2d + S), 1 + %}

4.2 Lower Bound

For the lower bound we describe two request sequences, the first of which enforces
the competitive ratio to be at least 1+ 2= and the second enforces it to be at

a+1
least 1 4+ %.

Theorem 8. Let MMTF operate on a Markov chain M. Then Ropr,(MMTF) >
d 5-1

max{l—i—g,l—l—m .

Proof. For the first sequence we will compare MMTF with MTF. Let (21, 2, ..., 2¢)

be the MTF’s list, and let item 27 be in position p(i) in the list maintained by

MMTF. Consider the request sequence o = (z1)*, (z2)*, ..., (z¢)®. The value of

k will be determined later. The cost of MTF to service o 1s

(1424 40 +Lk—1)+d0+1+ .4 (£—1))

<@+ )
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On the other hand, MMTF will move each requested item to front once
every S request, on the average. Also notice that a move-to-front action does
not affect the elements that are behind the moved element, but will increase
the access cost of elements that are in front of it in the list and have not been
requested yet. Therefore, to assume that item z; is in position p(¢) when it is first
requested gives a lower bound to the access cost incurred by MMTF. Therefore,
MMTF (o) is at least

(p(1) +p(2) + ...+ p(0))S + £k — S) + (p(1) + p(2) + ...+ p(£) — £)d

:(d+5)@ ok —S) - td

¢

If we choose £ >> k, formally % — 0, then we get

E[MMTF(s)]  d+S
MTF(o)  d+1

which by definition means that

d+ S < E[MMTF(0)] < d+ S
— — ¢
d+1 MTF(o) d+1

Ve >0 + ¢

a+S
d+1 "

Consider now the request sequence o = (z1, z3, ...7;)*. The cost incurred by
OPT is at most the cost incurred by the algorithm that services the request

The left inequality gives the lower bound of

sequence without moving any item, i.e., OPT(c) < k@. MMTF will move
an item once every S requests, on the average, so its cost on o is
LL+1) d

14+ %)~ 1
;U3

k
(p(L)+ ...+ p(0)k + §(p(1) + .. +pl)—O)d=Fk
Taking % — 0, the ratio approaches 1+ %.
It remains to say that both request sequences can be repeated sufficiently
many times to outweigh any additive constant.

4.3 Some Members of the Family

In this section, we apply the general bounds determined for the paid exchange
model to some well known members of the family. Those bounds, as expected,
depend on the scaling parameter d, and their limit behavior, as d — oo is of
interest.

Counter(k, {0}). In [8], Reingold et al., analyzed the Counter(k, {0}) algo-
rithm in the paid exchange model, and were able to determine an upper bound
of its competitive ratio in terms of the maximum counter value k& and d. Subse-
quently, they observed that as d tends to infinity, the best ratio (i.e., the ratio
that corresponds to the best choice of k for the particular d) tends to (54++/17) /4.
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In this section we will show that the above limit is tight. We begin by describ-
ing Counter(k, {0}) as an MMTF algorithm. As shown in Figure 4, Counter(k,
{0}) is a simple directed cycle of & 4+ 1 nodes. In the stationary distribution,
T =T = ... = T = kl?.AISO, ho =k +1,and for 1 < ¢ <k, h; =1i. There-
fore, S = kzﬁ and by Theorem 7 we get an upper bound for the competitive
ratio ROBL(COUNTER)Z

k+2 1 k+2

< rre e rTe
Ropr(Counter) < max{l + ¥ ’1+k—|—1(2d+ 5 )}

Now fix d, and set 1 + kz"f =1+ ﬁ(?d + k‘y). This equation has one non-
negative solution
k= 3+ d—f— L 17d? + 2d + 1
222

Since Ropr(Counter) has only one local minimum, which is also global, we
conclude that the optimal choice for k is either the floor or the ceiling of the
above expression. If we take the limit now, as d tends to infinity, Ropr (Counter)
is upper bounded by

. 1.3 . d 1 5+ V17
lim (14+ —=[-5+ =+ =V/1Td? +2d + 1]) = 22~ 2
A gglmg T HgViTd 24 1] 4 @

Fig. 4. The Counter algorithm

Consider now the lower bound for the competitive ratio for the above, optimal
choice of k

1 3 d 1 5417

lim (14 ——(|== + =+ /1T +2d+ 1] — 1)) = 2222
At g F g rgvindtad 1= 1) 4 ®)

From 2 and 3 we conclude that

5+ V17

lim Ropr(Counter) =
d— oo 4

Random-Move-To-Front(p). Consider now the RMTF(p) algorithm. In Sec-
tion 3.3 we determined that for RMTF(p), S = %. It is not difficult to compute
now the optimal choice of the probability p, given the value of d. From Theorem
7 we get that

1
Ropr(RMTF) < max{l+ p_d’ 2+ 2pd}
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For a particular d, the best choice for p is when the two expressions are equal,
that is

1 1 1
toa= et P==7 " % )

As p > 0, the only choice is p = 1/(2d), and then the competitive ratio is 3,
independent from d. The lower bound, on the other hand, depends on d.

1

1
MTF) > 14—, 142
Rogr(R ) > max{ +pd’ +d+1}

3d
d+1

= max{1.5,

} (5)
From 4 and 5 we get

3d
——— < Ropr(RMTF) <3
d+ 1~ OBL( )_

which is relatively tight, and clearly

lim ROBL(RMTF) =3
d— o0

5 Concluding Remarks

This paper leaves open several questions. One is to determine the correct compet-
itive ratio for the Markov-Move-To-Front family. This would imply the correct
competitive ratio for a number of interesting algorithms such as Random-Move-
To-Front and BIT. Although the presented family includes a wide variety of
algorithms, we were not able to find one that outperforms Random-Reset. 1t is
interesting to further investigate the family, and see if a better member exists, or
alternatively prove that Random-Reset is the best member of the family. In this
work, we required that each element in the list has a copy of the same Markov
chain. It is interesting to consider an algorithm, where each element is allowed
to have a different chain. This would allow “important” items to move to front
more frequently. Although in an adversarial setting this might not improve the
performance, it is possible that in practice, or in a model that captures locality
of reference, such an algorithm would have a better performance.
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