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ABSTRACT. The discrete logarithm problem plays a central role in cryptographic pro-
tocols and computational number theory. To establish the exact complexity, not only
of the discrete logarithm problem but also of its relatives, the Diffie-Hellman problem
and the decision Diffie-Hellman problem, is of some importance. These problems can
be set in a variety of groups, and in some of these they can assume different charac-
teristics. This work considers the bit complexity of the Diffie-Hellman and the decision
Diffie-Hellman problems. It was previously shown by Boneh and Venkatesan that it is
as hard to compute O(y/n) of the most significant bits of the Diffie-Hellman function,
as it is to compute the whole function, implying that if the Diffie-Hellman function is
difficult then so is computing this number of bits of it. The main result of this paper is
to show that if the decision Diffie-Hellman problem is hard then computing the two most
significant bits of the Diffie-Hellman function is hard. To place the result in perspective
a brief overview of relevant recent advances on related problems is given.

1. INTRODUCTION

In their landmark paper [14] Diffie and Hellman introduced the following key exchange
protocol, the Diffie-Hellman (DH) protocol, that is in universal use. For two users, Alice and
Bob to derive a common key in a finite cyclic group G, |G| = n, with generator g, G = (g),
they respectively choose, at random, integers a,b € [1,n] and exchange g%, ¢°. Each is
able to compute g®® from which a common key may be derived. It is assumed here that an
adversary, knowing G, g% and g¢°, is unable to compute g**. The computation of g*® from
knowledge of g® and g° is referred to as the Diffie-Hellman or DH problem and a function
that realizes this the DH function. For security something more is needed than the difficulty
of computing the DH function: the amount of information the adversary is able to derive
from the available information should be limited. Thus if it is intended to use the 128 most
significant bits of the exchanged secret, for a common block cipher key, then these bits
should be as difficult to compute as the DH function.

The problem is intimately connected with the discrete logarithm (DL) problem in G:
given g, y = ¢g* find z. Clearly if one is able to find discrete logarithms in G then one can
break the DH protocol and the DL problem is at least as hard as the DH problem.

A related problem is the decision DH problem, DDH, which asks whether, given the triple
g%, g% and ¢, ¢ = ab (mod |G)).

These problems, and related ones, are of central importance to cryptography and certain
aspects of them are considered in this work. To place the results in perspective a brief
overview of the recent advances on these problems is given. The problems are defined more
formally in the next section where the relationships between the problems are explored as
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well as the types of groups that have been considered as the most interesting for these
problems.

The complexity of the problems in cyclic groups with no assumed representation, the
so-called generic groups, is discussed in Section 3. Here it is of interest to note that with no
specific group representation assumed, the complexity of the problems can be shown to be
lower bounded by Q(,/p), where p is the largest prime divisor of the group order. However,
the introduction of some smoothness criteria for group elements immediately allows the
introduction of an index calculus method and a subexponential complexity.

Section 4 considers recent results on the statistical distribution of random versus Diffie-
Hellman triples. Clearly any possibility of distinguishing such triples would yield information
that might be exploited to break the problem.

The main contribution of the work is considered in Section 5, the bit complexity of the
DH problem. Here it is shown that if the DDH problem is hard then computing the two
most significant bits of the DH problem is hard. Thus an oracle that is able to return the
two most significant bits of the DH function can be used to determine the DDH problem
with high probability. The implication of the result is that if the DDH problem is indeed
computationally infeasible then so is computing the two most significant bits of the DH
function. The final section of the paper considers the possibility of strengthening this result
further. It was previously shown by Boneh and Venkatesan [4] that it is as hard to compute
O(4/n) of the most significant bits of the Diffie-Hellman function, as it is to compute the
whole function, implying that if the Diffie-Hellman function is difficult then so is computing
this number of bits of it. Both results contribute to the understanding of the relative
difficulty of the DH and DDH functions.

2. THE DISCRETE LOGARITHM AND DIFFIE-HELLMAN PROBLEMS
For consistency we define again the discrete logarithm (DL) problem as follows:

Definition 2.1. The DL problem for a cyclic group G with respect to a given generator g
is, given y and g find an = € Z such that y = ¢g*. Such an z is defined modulo |G|. We call
the smallest such non-negative x the discrete logarithm of y with respect to g.

The instance of most concern in this work will be a subgroup of prime order of the
multiplicative group Ej. In this case, if a is a primitive element of F} then g = o for some
alp — 1 and the case of most cryptographic interest is when g has prime order in F;.

A second problem of interest is the Diffie-Hellman (DH) problem:

Definition 2.2. The DH problem for a cyclic group G with respect to a given generator g
is, given g, ¢® and ¢°, with a, b € Z, compute g.

Certainly if one can compute discrete logarithms one can solve the DH problem. However
for the converse it is unknown. For most groups it is believed that the DL and DH problems
have similar complexities. Some results to this effect have been obtained in [5, 29, 30, 32].

A related concept that will be of interest in later sections is the notion of a DH oracle

(e.g [33]):

Definition 2.3. A DH oracle for for a group G with respect to a given g takes as inputs
9% and ¢® and returns, without computational cost, g2°.

It is also convenient to speak of a DH function which is an incarnation of a DH oracle
which returns g2 given g and g® as input. One might also consider the notion of random
DH oracles where the oracle returns the correct answer with a certain probability, but the
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above will be sufficient for the purposes of interest here. A more formal approach to these
problems is taken in [7] where again randomized algorithms are used.
Maurer [33] also introduced the notion of a squaring DH oracle which on input g* returns
g“2. It is noted there that this is equivalent to a DH oracle in a group whose order is known.
A problem related to the DH problem is the decision DH problem (DDH) defined as
follows:

Definition 2.4. The DDH problem for a cyclic group G with respect to a given generator
g is: for random integers a, b, ¢ € Z, given {g%, g*, ¢°} decide whether ¢ = ab (mod |G|)
or not.

Clearly, in general, DDH is no harder than DH and DH is no harder than DL. As will be
shown later however, something more can be said for certain groups.

The DL problem in cyclic subgroups of E; of prime order has perhaps received the most
attention. The most effective attacks on this case have been a variety of so-called index
calculus attacks, the latest being the number field sieve version. In general these algorithms
proceed in two stages; the first finds the discrete logarithms of elements in a factor base, a
set of elements chosen so that it can be conveniently determined if an arbitrary element can
be decomposed into elements of it. In the second stage the element whose discrete logarithm
is required is operated upon to find a related element that decomposes into elements in the
factor base. The notion of decomposability of an element into the factor base often leads
to a notion of smoothness which is readily available for integers and polynomials but is
noticeably missing from other instances of the problem.

Without elaborating further it is noted that the complexity (generally in both time and
storage) is of the form

Ly(a,c) = exp(c(log p)* (loglog p)' )

for some small constant ¢ depending on the algorithm. The current best algorithms for both
integer factorization and discrete logarithms have a constant ¢ = (64/9)'/3 and a = 1/3
(the same complexity as for factoring integers). The L function above is referred to as
subexponential: (if @ = 1 the algorithm is exponential in log p and if a = 0 it is polynomial in
log p. Experience seems to indicate that when the group of the DL problem admits a notion
of smoothness, and the density of smooth group elements is appropriate, the complexity
is invariably subexponential and otherwise O(,/p). In this last case an algorithm such as
Pollard’s p algorithm or Shanks baby-step-giant-step algorithm achieves this complexity in
arbitrary cyclic groups of order p.

Apart from cyclic subgroups of F; a variety of other groups have been considered as
suitable for the DL problem. From the above discussion of course it is of particular interest
to find groups that do not satisfy smoothness criteria and hence have the square root com-
plexity, the worst case possible (and best for cryptographic application). A brief overview
of the groups considered (elliptic curves, Jacobians of hyperelliptic curves, Abelian varieties
and ideal class groups) and recent advances in these groups, is given.

For simplicity, we consider finite fields F, of characteristic p > 3. An elliptic curve over
the finite field F,, can be taken, in affine coordinates, without loss of generality, to be of the
form:

v’ =2 +ar+b, a, beTF,.
We define
B, () ={P = (u,v) € F} | v* =4’ + au+ b} U{O},
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where O is a special point (called the point at infinity). The number of isomorphism classes
of such curves is known [36] depending on the value of ¢ mod 12. Similar statements can be
made about the cases of characteristic 2 or 3. In all cases, there is a natural point addition
on the curve that yields an Abelian group and the order of this group, including the group
identity, the point at infinity, is denoted |E,(F;)|. In general the number of points on a
curve obeys Hasse’s theorem:

|Eos(F)| =q+1—t, |t| <24

For the case of ¢ = p > 3, an odd prime, it can be shown that (see [36]) that there is at
least one curve of order ¢ + 1 — ¢ for each value of |t| < 2,/p. In general a curve is called
supersingular if char(F,) = p|t and otherwise nonsupersingular. For the case that ¢ = p a
supersingular curve has p + 1 points, a case that will be of some cryptographic importance
later. As noted, for cryptographic purposes one would like to use a group (in this case,
additive) of prime order and the generation of suitable curves for the case of ¢ = p > 3 has
occupied considerable attention. It is not strictly necessary for the curve order to be prime
as a prime order subgroup could be used but for reasons of efficiency there is a natural
cryptographic preference for the curve order itself to be prime which, for this case, is always
possible (for curves over fields of characteristic 2 one can show that the curve order is always
divisible by either 2 or 4). To determine suitable curves requires the number of points on
the curve be counted and this has generated a series of papers on the problem of increasing
efficiency. The original work of Schoof [45] gave a polynomial time algorithm (in logp) to
count points. This was improved considerably by contributions to the problem of Elkies
and Atkins to result in the so-called SEA algorithm (for an account of this see [3]). More
recently Satoh [46], gave a new algorithm for small characteristic, which has since been
improved, (see Fouquet et al [18] and many others) to the point where point counting can
be done very rapidly on curves of orders far in excess (at this time) of those contemplated
for cryptographic use.

The discrete logarithm problem on an elliptic curve is, given a point P on the curve, along
with the curve coefficients and a point Q = k- P, k € Z, find k. A key aspect of this problem
is that no concept of smoothness has been formulated in such a group which rules out index
calculus techniques discussed above and, by the currently best available algorithms, the
complexity of solving this problem is O(y/p), as might be achieved with Shank’s baby-step-
giant-step or Pollard’s rho algorithm. It should be noted that when the curve order divides
p*F — 1, the order of the number of nonzero elements in a small extension of E,, it may be
possible to map the elliptic curve problem into an ordinary finite field discrete logarithm
problem where the algorithm is again subexponential (see [17, 16, 20, 37]). In practice, this
condition (the MOV condition) is always checked and curves that satisfy it are avoided.

A natural generalization of the group of an elliptic curve to consider is a hyperelliptic
curve [26]. Such a curve C of genus g is given by the equation

y* +h(z)y = f(2)

where h(z) € F,[z] is of degree at most g and f(z) € F,[z] is monic of degree 2g + 1. We
assume the curve is smooth at all points, i.e., the partial derivatives are not simultaneously
zero at any solution to the equation (and the point at infinity is smooth). The set of such
solutions (points) does not form a group and it is necessary to pass to the Jacobian of the
curve for a suitable group. To define this structure a divisor is defined as a formal sum
> m;P;, m; € Z, where P; is a point on the curve over the algebraic closure of the field ]F_Z;
and only a finite number of the terms of the sum are nonzero. The degree of a divisor is
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> m; and the order of a divisor at the point P; is m;. Let I denote the set of divisors of
the curve and D° those of degree zero. For every bivariate rational function g on the curve
C one defines its divisor
div(g) = Z ordp(g)P
PeC

called a principal divisor, where ordp(g) is the order of the zero or pole of g at point P on
the curve. Since div(g) € D°, the principal divisors form a subgroup of DY, denoted P. The
quotient DP /PP is called the Jacobian J of the curve. The Jacobian has been the subject of
considerable recent attention for cryptographic use, and the problems associated with the
use of elliptic curves for cryptography, especially point counting and efficient arithmetic, are
present for this case as well. The question of efficient arithmetic is particularly challenging
since computation is in a quotient group and the question of element representation arises.
As for the elliptic curve case, one can construct curves over extension fields by using the zeta
function approach although for a genus g curve one must first have available the number of
points on the first g extensions of the base field. In analogy with the Hasse theorem, one
can show [26] that the order of the Jacobian of a curve C/F,; of genus g, over F;-, lies in the
range

[(qr/2 _ 1)29’ (qr/2 + 1)29]‘

A recent result of Gaudry [21] shows that it is indeed possible to find a concept of
smoothness for this case, and it can be used to reduce the overall complexity of finding
discrete logarithms in a Jacobian of a curve of genus g to

O(g” + g'q)

polynomial time operations. For a fixed genus g the complexity of the algorithm takes the
form

0(g*).
The implication of this important result is that hyperelliptic curves of genus greater than 4
need not be considered since elliptic curves over the degree 4 extension of the base field will
offer the same security and it is generally felt that arithmetic over the Jacobian is unlikely
to be faster than on the corresponding elliptic curve.

Continuing to look at suitable structures for the DL problem, the natural extension to
elliptic curves is Abelian varieties. These are simply higher dimensional generalizations of
elliptic curves whose points form an Abelian group and, again, the security of the system
relies on the difficulty of the DL problem in this group. Again, the attraction is that there
is no known subexponential algorithm for this group and the thought is that, for the same
level of security as a fixed elliptic curve, the underlying field can be smaller that may allow
for faster arithmetic. It is not yet clear if this can in fact be realized. The notion of a
supersingular variety will also prove useful for certain cryptographic purposes described
below.

The last group to be discussed as a setting for the discrete logarithm problem is the ideal
class group of an algebraic number field. and this application is briefly described ([9], [10],
[47]), following mainly [10].

Let D be a square-free integer and let X = Q(v/D) be the quadratic field obtained by
adjoining v/D to the rationals. Let

/1 whenD=2or3 (mod4)
9712 whenD=1 (mod4)
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The discriminant of K is given by A = (2/0)2D. Let a denote the conjugate of a in K and
let N(-) and T'r(-) denote the norm and trace respectively. The integers of K, Ok, are the
elements for which both the trace and norm are rational integers, Z. Then it is known that
Ox is generated, as a Z-module, by 1 and (¢ — 1+ v/D)/o, i.e.,

Ox =[1,w], where w= (o0 —-1+vVD)/o.

Any ideal of I of Ok can be expressed as I = [a,b + cw], the Z-module generated by 1 and
b+ cw, and if ¢ = 1 the ideal is said to be primitive. The norm of I is ac. While elements
of Ok do not factor uniquely, it is true that any ideal of Ox can be expressed uniquely, up
to order, as a product of distinct prime ideal powers. The notion of a product of ideals is
well defined and we say that two ideals I, J of Ok are equivalent (I ~ J), if there exist
two principal ideals (&) and (8) such that (a)I = (8)J. This equivalence between ideals
of Ok divides the ideals into equivalence classes, C and a fundamental result of algebraic
number theory is that there are only a finite number h of classes of Ox. There is a natural
multiplication on the set of equivalence classes:

CiCj = {JHlJE C;, He CJ}

and under this multiplication, the set of ideal equivalence classes forms a group, the ideal
class group of Ok, with identity the class containing the principal ideals.

A problem arises in determining representatives for the classes and the notion of reduced
ideals is of use. An ideal I is called reduced if it is primitive and there is no element a of I
for which |a| < N(I) and |a| < N(I).

The discrete logarithm in the ideal class group then is: for some D < 0 (imaginary case),
a givenideal I € Ok and J ~ I?,z € Z,determine . The complexity of the DL problem in
this setting is examined in a many papers and (see for example [47]) if the parameters are
chosen with care, the currently most efficient algorithms available run in exponential time
in the order of the class group.

Four candidates for cyclic groups which one might consider to be suitable for the DL,
DH and DDH problems as well as for a public key protocol such as key exchange, have been
noted. It has been observed, in general, that DDH is no harder than DH and DH is no
harder than DL and one purpose of this work is to contribute toward the understanding on
the exact nature of these relationships. However for certain groups more can be said. Indeed
it has recently been shown that there is a group where DDH is easy but DH is equivalent
to DL [24] and this case is briefly noted here.

Consider a pair of n torsion points P, € E[n] on an elliptic curve over E,, and denote
by e, the Weil pairing, which is bilinear and non-degenerate:

en: En]x E[n] — py
@P,bQ) =~ (aP,bQ) = (P,Q)"

where p,, is the set on n-th roots of unity in an extension field, F,x. For most curves the
degree of this extension is too large to make the use of such pairings practical. However
when the degree is small then one can map the DL problem on the elliptic curve to one in
F;)’“ where a subexponential algorithm (index calculus) is available. This was the basis of
the mapping used in [37] which showed the insecurity of supersingular curves (i.e. where
p divides the trace of the curve, t) and, more generally established the so-called MOV
condition where the group order on the elliptic curve divides p¥ — 1 for some relatively
small k. For supersingular curves it is possible to find two such linearly independent points,
P, Q, P # cQ since the endomorphism ring is nontrivial and in this case an endomorphism
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which is not a fixed point multiple is available. One can then use the points P and ¢(P)
for the two points, where ¢ is the endomorphism. Hence on curves where a non-degenerate
pairing exists, the DDH problem becomes easy. In fact Joux and Nguyen [24] use these
ideas to construct curves where the DDH problem is easy and the DH and DL problems
are provably equivalent. The construction of Menezes et. al. was generalized by Frey and
Riick in [16]. Their idea was to use a variant of the Tate pairing, which in addition has the
property that (P, P) # 1 for points P of “large” order. Garefalakis subsequently showed
[20] that the Tate pairing can be obtained as a special case of a generalized form of the Weil
pairing, thus connecting the two previous approaches.

The separation of the DDH problem from the DH and DL problem in these special groups
is an interesting aspect of the problem, showing that in certain cases the three problems
behave very differently. Rubin and Silverberg [44] extend these notions to the case of
supersingular Abelian varieties, showing that all the notions of bilinear forms carry through
to this more general setting.

3. ALGORITHMS FOR GENERIC GROUPS

In this section, we discuss generic algorithms for the DL problem, i.e., algorithms that do
make any use of the particular presentation of the group elements, and therefore work for any
group. We note that any such algorithm can only make use of the group operation, inversion,
and equality test for group elements. Such generic algorithms are important for two reasons:
as they work for any group, they give an upper bound for the DL problem regardless of the
precise presentation of the group; furthermore, there are groups of cryptographic interest,
for which essentially no better method is known (i.e., it is not known how to make essential
use of the group presentation). Such groups are for example Jacobian of algebraic curves
over finite fields — provided that the MOV and Weil descent attacks do not work.

In what follows, we assume that the group order is a prime p, since we can always reduce
the computation of a DL to this case, by first reducing to the prime power case (via the
Chinese Remainder Theorem) and then to the prime case (via a p-adic expansion).

The first such method is Shank’s baby-step-giant-step (BSGS) algorithm, which for any
cyclic group of prime order p has time complexity O(,/p), and requires O(,/p) storage.
Given y = g%, the basic idea is to write the discrete logarithm z that we want to compute
as ¢ =i[p| +j with 0 <4,j < [p]. Then

y = gz'[ij = gly= gifzﬂ,
and we proceed to compute and store the values
gy, for j=0,...[p] -1
Then we compute the values
g\l for i=0,...[p] -1

one by one, and compare with the values stored in the table. Once a collision is found the
discrete logarithm can be computed.

A second method is due to Pollard [43] , and achieves the same effect, nondeterministi-
cally, without the storage requirement. Here we give the method as described by Teske in
[51]. We wish to compute the DL of y = ¢%, |{g)| = p, prime. We first divide the elements
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of (g) into three sets T;, ¢ =1,2,3 of roughly equal size, and we define the function

gh, heT
1) f(hy=< B, heTD
yh, h € T3

We choose a number a€g{l,...p} and set
h0=ga, ]’Li+1 =f(h@), i:1,2,3,....

Observing the definition of f we see that h; = g% y”, and the two sequences {a;} and {3;}
are given by
a; +1 ifa; €Ty

o) =Q, Qir1 = 2a; if a; € To R
o5 if a; € T3
and
Bi if B; €Ty
Bo=0, Bix1=1 2B if B; € Ty

,81' +1 if ,81 €T3
Since we operate in a finite group, the sequence {h;} is ultimately periodic. We proceed
computing (h;, a;, i), and we store only a finite number of elements. In Teske’s version, it
suffices to maintain a list of 8 triplets at a time. At every step we check if a newly computed
triplet matches one stored triplet. Under the assumption that f behaves as a random map,
Teske shows that a match will occur after O(,/p) steps. In such an event we have, say,
h; = hj, and therefore
gai—aj — yﬁj—ﬂi7
which implies that
a; —a; = (B; — Bi)z  (mod p),
and the DL is computed. We refer to [51] for an excellent survey of this and other variants
of Pollard’s rho method.

It is natural to ask if one can do better in a generic setting like this. This question was
considered by Shoup in [48], improving upon previous results of Nechaev [39]. We briefly
describe Shoup’s lower bound for a cyclic group of order p”, for a prime p. In Shoup’s
model, a generic algorithm starts with 1 and ¢” and at all times maintains a list of group
elements g*. New elements are computed and added to the list by applying the two available
operations (i.e., group operation and inversion) to the elements already in the list. Shoup
sets up the model, so that the algorithm can compute the DL with non-negligible probability
only by looking at elements in the list. And since no other test is available (the algorithm
does not look at the presentation of the elements), the DL can be computed only by finding a
collision. It remains to note that starting with {1, ¢*} and applying the available operations,
we get elements of the form

g%, si= Fi(z)

for some linear polynomial F;(X) € Z/p"[X]. Then a collision g% = g% means F;(z) =
Fj;(z). The probability that the last equality holds for a value z€rZ /p" is at most 1/p. For
a set of m polynomials, i.e., after m group operations, the probability for such a collision is
O(m?/p). As the probability is non-negligible only for m = Q(,/p), any successful algorithm
for the DL must perform at least that many group operations. Essentially, the model reduces
the DL problem to a birthday paradox, where each person corresponds to a computed group
element, and a collision happens if two people have the same birthday.
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In this generic setting, Shoup has also considered the complexity of the DH and DDH
problem, and has shown, using arguments similar to the above, that any successful algorithm
for DH has to perform at least Q(,/p) group operations. The situation for DDH is slightly
different, as one can always make use of subgroups of small order to distinguish between
9? and g¢°. Thus in this case, Shoup showed that a generic algorithm for DDH in G has to
perform at least €)(,/p) group operations, where now p is the smallest prime factor of |G|.

We turn now to generic reductions between the DL and DH problems. The results are
due to Maurer [29], and Maurer and Wolf [30]. We are given ¢g” and an oracle for the DH
problem in G. Our task is to compute z. Because of the Chinese Remainder Theorem we
may assume that g has prime power order. In fact, we are going to need something more:
the order of g needs to be prime. Thus, z is defined modulo p, and can be considered an
element of If,. Suppose now that we can find an elliptic curve E/E, such that E(E,) is cyclic,
and |E(E,)| is smooth. Let

Y?=X*+AX+B, ABEF,

be a model for the curve. Then, using group operations and the DH oracle, we can compute
g””3+A””+B , and then combining a square root algorithm due to Peralta [42] and the DH
oracle, we can compute g¥ such that y> = 2% + Az + B. If 23 + Az + B happens to be
a quadratic non-residue mod p, then we repeat with g* replaced by ¢**? for d chosen at
random in E,. Thus we can assume that ) = (z,y) is a point on the curve. We have
reduced our problem to computing Q. Fix now a generator P of E(F,). One possibility
for finding @) would be to compute some k such that @) = kP. Going through the list jP
for j = 1,2,...,|E(B,)|, and for each point (u,v) in the sequence check if g* = ¢® is the
straightforward (and exponentially long) method. The idea of Maurer and Wolf is to use
the smoothness of |E(E,)|, and compute k£ modulo all the prime powers dividing the group
order, and finally combine the results using the Chinese Remainder Theorem. Suppose, for
simplicity, that ¢ appears to the power 1 in the factorization of |E(E,)|. Then, from (g%, g¥)
we can compute (g%, g¥) such that (u,v) = Q' = (|E(E,)|/q) - Q. Now, going through the
sequence (j|E(E,)|/q) - P for j = 1,...,q is feasible, since the prime ¢ is assumed to be
small. This will give us some k, such that k = k; (mod g¢).

On the negative side, Maurer and Wolf have shown in [32] that the condition, that all large
prime factors of G appear with multiplicity 1, in the above generic reduction is essential.
Using the model defined by Shoup, and similar techniques, they showed that no generic
reduction from the DL to the DDH problem can exist if the order of the group is divisible
by the square of a large prime. Thus, under the assumption that a suitable elliptic curve
can be found, the DL problem and the DH problem for a group G are equivalent if and only
if |G| is not divisible by the square of any large prime. Similar results have also been shown
by the same authors for the relation between the DH and DDH problems. Namely, the DDH
problem and the DH problem for a group G are equivalent (under generic reductions) if and
only if all prime factors of |G| are small (in which case both problems are easy).

With respect to generic reductions, the picture is now quite complete. We note, that
generic algorithms work regardless of the presentation of the group and therefore the upper
bounds are valid for every specific group. Negative results, however, do not imply any-
thing for any particular group. Thus, studying the relation between the three problems in
particular groups is still a very interesting open problem.

The results of Nechaev and Shoup are in sharp contrast with the situation in multiplicative
groups of finite fields and in Jacobians of hyperelliptic curves of large genus, where index
calculus methods are known, and have subexponential time complexity. The reason is
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clearly that in those groups one can make essential use of the encoding of group elements:
for instance, one is able to define unique decomposition of group elements over a specified
set, which is important for index calculus. This “unique decomposition” property is already
an assumption about the presentation of the group. In all known cases, where the index
calculus beats exponential time complexity, one also has strong results about the probability
of a group element decomposing over the specified set — referred to as smoothness probability.
In a recent work, Enge and Gaudry [15] gave an abstraction of the index calculus method to
groups where one has a notion of unique decomposition. They analyzed the algorithm in this
general setting, and showed that certain assumptions about the density of smooth elements
are in essence all one needs to obtain provably subexponential complexity. As the authors are
mainly interested in providing an abstraction of known proveble methods, their smoothness
assumption leads to time complexity of the form L(1/2,¢c). Stronger assumptions about the
smoothness probability would lead to faster algorithms. However, in this case there would
be no known example (specific group) which would provably satisfy the assumptions. Of
course, unique decomposition and smoothness need to be effective in an algorithmic sense,
so efficient smoothness tests and decomposition algorithms have also to be available.

4. DISTRIBUTION PROBLEMS FOR DIFFIE-HELLMAN TRIPLES

Another way of looking at the DDH problem in (Z /p)* is as follows. Since DDH is easily
seen to be random self-reducible, deciding the DDH problem in the random case is as hard
as in the worst case. What we want then is, given p, g, g% ¢° and ¢¢, where a,ber(Z /p)*,
to decide if ¢ = ab (mod p) or c is chosen uniformly at random from (Z/p)*. Equivalently,
we want to distinguish between the distribution (g%, g% ¢g?%) — also called Diffie-Hellman
distribution — and the uniform distribution. The assumption that, for suitably chosen g,
this is intractable is the so-called Diffie-Hellman indistinguishability assumption (DHI).

Note that to distinguish between the two distributions, an algorithm for DDH suffices.
Thus, regardless of the characteristics of the Diffie-Hellman distribution, an algebraic algo-
rithm for deciding DDH would make the DHI assumption false. However, in the absence of
any such algorithm, studying the Diffie-Hellman distribution may give us some reassurance
about the validity of the DHI assumption.

The Diffie-Hellman distribution has been studied by Canetti et.al. in [11, 12]. The
authors formalize the assumption as follows.

Assumption 4.1 ([12]). Fiz e > 0 and let p be an n-bit prime. Let g € (Z/p)* have
order t such that for every prime divisor £ of t, £ > p°. If a,b,c are chosen uniformly at
random from (Z /t)*, then the distributions (g2, g%, g*®) and (g92,4°, g¢) are computationally
indistinguishable.

The reason for the assumption that g is a residue for all small prime divisors of p — 1
is to avoid trivial cases, where the two distributions can be distinguished using the power
residuocity of g.

The main result of [12] is essentially that if one considers a linear (but sufficiently small)
proportion of the most significant bits (or the least significant bits) of the elements involved,
then the two distributions are statistically very close. More formally, if o (-) denotes the k-
most (or least) significant bits of a string, then the statistical distance between the uniform
distribution on {0,1}** and (0% (g%), ok (g°), ok (g?")) is exponentially small. The statistical
distance between two distributions o and 8 over the same domain D is defined to be

var(a, B) = Z |a(z) — B(x)|.

zeD
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Theorem 4.2 ([12]). Let p be an n-bit prime, and let g € (Z/p)* be of order t > p*/*+e
for some € > 0. Then there exists some positive constant v such that for any k < yn, the
statistical distance between (ok(g?), ok (g%), 0k (9??)) and the uniform distribution on {0,1}3%
is exponentially small.

In fact, Theorem 2 of [12] contains also a slightly weaker result for the more general case
that one looks at any k bits (not necessarily consecutive).

Theorem 4.2 provides evidence that any algorithm based on statistical data alone, cannot
be successful in distinguishing the Diffie-Hellman distribution from the uniform.

5. THE BIT COMPLEXITY OF THE DH PROBLEM IN K,

The question of the time complexity of the DH and DDH problems remains unanswered.
Assume, however, that the two problems are hard. Is this enough to ensure that the Diffie-
Hellman protocol is secure? The answer to that depends on how one uses the established
key. For instance, it is conceivable that only some, say 64, of the most significant bits are
used as a secret key for a block cipher. In this case, an eavesdropper who cannot compute
the Diffie-Hellman function, but can compute the 64 most significant bits can still crack the
session. Thus, it becomes important to study the security of small substrings (or individual
bits if possible) of the key.

The first breakthrough in this direction came by Boneh and Venkatesan in [4]. Their idea
was to show that any algorithm, which can compute about O(y/n) most significant bits of
the DH function can be converted into an algorithm to compute all the bits.

We will need a notion for the m most significant bits of elements of ;. It is common in
this context (see [4, 22]) to define the m most significant bits of t € {0,...,p— 1} as fr(?),
where

p p
(2) fm(t) 2_m St<(fm(t)+1) 2_m
An explanation here is in order. In general, the m most significant bits of an n-bit string ¢
are defined as the number B such that

B2V ™ <t< (B+1) 2" ™,

This would be in agreement with our definition if p actually were 2". The problem arises
when p is greater, but very close to a power of 2. As an extreme example consider a prime
of the form p = 2" + 1. Then p is of n+ 1 bits, but almost all elements in F, are represented
by strings whose first bit is 0. Thus, the most significant bit in this case can easily be
predicted (and carries almost no information). Note that in the opposite extreme, when
say p = 2" — 1, then the two definitions are (for all that matters) equivalent. Finally, we
note that the two definitions differ by one bit only. This is the reason, why in [22] choosing
between the two definitions is not important: the number of bits used there is ~ 1/, so the
difference becomes insignificant.

Suppose now, that we have an oracle O,,, which on input g, g%, ¢g* € E, outputs the m
most significant bits of g%, i.e., O (g,9% 9°) = fm(g®). Is there an efficient algorithm,
which makes a polynomial number of queries to the oracle O,,, that can compute the DH
function? For m = n the problem is trivial. The goal is to devise an algorithm for m as
small as possible. The above problem was first formalized in [4].

Hidden Number Problem (HNP): Fix a prime p and a positive integer m. Fix an element
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a € F}. Compute a in expected polynomial time given access to an oracle Oq,m, which on
input ¢ € ' outputs
Oa,m(t) = fm(at).
The oracle just defined is nothing more than an oracle for the m most significant bits
of a DH key. Indeed, consider a Diffie-Hellman triple (g%, g%, g°®). The hidden number is
a = g®. If we choose z € [1,p — 1], then

g(a—i—w)b ab+zb

=g = ag?,

therefore
Om(9,9°7",9") = Oa,m(9"").

Boneh and Venkatesan proposed, in [4], a method for solving the HNP for multipliers ¢
chosen uniformly at random in E;, and for m = [y/n] + [logn] using roughly 2,/n oracle
calls, where n is the number of bits of the prime p. Their method is based on lattice basis
reduction techniques. The argument work as follows. After d oracle queries for random

inputs #1,...,t; € E}, we know d numbers uy, ..., uq such that
(3) “ig% < at; remp<(ui+1)2%.
We consider now the lattice L generated by the rows of the matrix
p 0 - 0 0
0 p -~ 0 0
0 0 -~~~ p 0
ti ta .- tg 1/p

We refer to the first d vectors as p-vectors. Then by multiplying the last vector by a and
subtracting appropriate multiples of p-vectors, we see that the vector

!
vy = (aty rem p,ats rem p, ..., atq rem p, —)
b

is a lattice vector. Moreover, this vector is very close to the known vector

p p p
u= (Ulz—m,U22—m,...,Ud2—m,0).
Indeed, by Eq.(3) we have
p .
OSati—ui2—m<2£m, i=1,...,d

and therefore the Euclidean distance between the two vectors is bounded by

p? o2\ /2 » a
For carefully chosen d and m, v,, is so close to the known vector u that one does not expect
any other lattice vectors to be so close. If this is the case, then we can recover v, using an
algorithm for the closest lattice vector problem (e.g., [1, 25]).

In choosing d and m we have two goals to meet: the two vectors have to be close enough so
that v, is unique and the closest lattice vector algorithm is guaranteed to find it. Boneh and
Venkatesan prove in [4] that for d,m = O(y/logp) the vector v, is indeed unique provided
that the multipliers ¢; are chosen uniformly at random in F;.

Going back to the bit security problem of the Diffie-Hellman key, we see that the mul-
tipliers are elements of the form g*® for z€x[1,p — 1], and therefore cannot be uniformly
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distributed unless gcd(b, p—1) = 1. This problem was realized by Gonzdlez Vasco and Shpar-
linski in [22]. If g is a generator of a proper subgroup, or b is chosen so that ged(b,p—1) > 1
then the uniqueness proof (Theorem 5 in [4]) is not general enough to apply. The idea
of Gonzélez Vasco and Shparlinski is to “randomize” the exponent b first, by computing
gr = g1 for r€R[0,T — 1] where T is the order of the element g. Then one works as
before, computing ¢*t%, and using an oracle for the most significant bits of g(e+=)(®+7) for
randomly chosen values of . We see that

g(a-i-m)(b-i-r) — g?+z — ggg:.
So, again, we have a HNP where now the hidden number, g2, lives in the subgroup (g,) and
the multipliers g7 are uniformly distributed in the same subgroup. We note that recovering
g2 is equivalent to recovering g.

It remains to show that the lattice based algorithm for the HNP works for multipliers that
lie in a proper subgroup. The authors show that for any element g € E, of order T > p'/3+=
for any € > 0 and multipliers ¢;€g{g), any vector sufficiently close to the vector u is, with
high probability, of the form

V= (ﬂtl remp,... 7Btd rem p, é)v
p

for some 8 = a (mod p). This, together with the fact that the order of g, above is greater
than p'/3+¢ with very high probability, provide all the necessary components of the proof.

The uniqueness proof is based on a number theoretic result concerning the distribution
of g® modulo p, when g is of order T' > p'/3+<. The main tool for such “uniformity” results
are exponential sums. We state Lemma 2.1 of [22] here for later reference.

Lemma 5.1 (Lemma 2.11in [22]). For any ¢ > 0 there exists > 0 such that for any element
g € E of order T > p'/*+< we have

T
NA,p(ra h) - Th = O(Tlits)a

max max
,h ged(A,p)=1

where Ny ,(r, h) is the number of integers x € [0,T — 1] such that Ag® rem p € [r+1,r+ h].

Later, we will require an estimate for the number Ny p(r1,72,h) of 2 € {0,...,T—1} such
that Ag® € [r1,71 +h)U (re,79 + h]. Such an estimate follows immediately from Lemma 5.1,
since

Nap(r1,m2,h) = Nxp(ri, h) + Ny p(r2, h),
and therefore,

2Th
N T2, h) — —
T gedli | oo M

2Th
= N, h)+ N h) — —
B
Th
< max max |Ny,(r,h) — —
mh ged(A,p)=1 p
Th
N h) — —
R edBi e =

= O(T').

We note that the algorithm of Boneh and Venkatesan in practice preforms better than
predicted in theory. Namely, the number of bits needed (for each oracle call) is only a small



14 TAN F. BLAKE AND THEO GAREFALAKIS

constant, rather than ~ y/logp. The reason for this disagreement is that the LLL algorithm
preforms much better in practice than theoretically known. Thus, any advance in lattice
basis reduction would have direct implications to the problem of the bit-security of the DH
key.

Our goal here is to reduce the number of needed bits, at the expense of an assumption
stronger than the Diffie-Hellman assumption. Our basis is the assumption that the decision
Diffie-Hellman problem is hard.

Theorem 5.2. Let p be a prime, and g € F, be an element of multiplicative order T >
p'/3te. There exits a probabilistic polynomial time algorithm, which for any triplet (a,b,¢) €
(1,773, given [g%|p, | 9°]p, Lg°|p, makes k calls to the oracle O, and decides if | g**|, = |¢°],»
with error probability exponentially close to 2%,

Proof. The basic idea for the proof is to use a fingerprinting technique to decide the equality
lg?], L lg¢]p- Such techniques have been very useful in deciding algebraic equalities such as
equalities of matrices very efficiently (see [38]). In our case, one part of the equality, namely
Lg% | p> is not known. Instead, we will use the oracle O, which gives us some information
about |g%%],. To demonstrate the basic idea we first consider the simple situation, where g
is a primitive root modulo p, and ged(b,p — 1) = 1. In this case g° is again a primitive root
modulo p.

Denote a = |g%],, and v = |g¢],. Thus we wish to decide if @ = 7. We repeat the

following step k times. Select an integer = € {1,...,p — 1} uniformly at random. Then
g = ¢¢ (modp) <=
99" = ¢°%¢" (modp) <=
at = vt (mod p),

where ¢ = |g” |, is uniformly distributed in F;. If @ = ~y then |at], = |vt], for every t € F;.
If, on the other hand, a # v, then |at|, # [yt], for every t € E;. One would expect this
inequality to be reflected in the two most significant bits of the two values for many t’s.
Indeed, we show that this is the case, and in fact the two most significant bits are different
for at least half of the values of .

We consider the number of ¢’s such that fo(lat],) = fo(|vt]p) = B, in the case a # 7.
Let

at=y; (modp), and ~t=y: (mod p).

Then
(4) (a=Mt=y1—y2 (mod p)
and
b D
B~ < B+1) =
1 S0 <(B+1) 1
b p
B=- < B+1) =.
i S W <(B+1) 1
Therefore

b b
4<Z/1 y2<4.

This together with Equation (4), gives

(5) (a—y)t=y (modp), ye [L‘Ll)u(p—pTl,p—l].

W~
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Since a # 7y, the number of solutions is upper bounded by (p —1)/2. Therefore, for at least
(p — 1)/2 values of ¢, fo(lat]p) # fo(lvElp). It remains to show that one can check the
equality

F2(lat]p) # f2([t]p)-

As both v and t can be computed from the input, so can fo(|vt|,). We observe now that
lat], can be realized as a Diffie-Hellman key

ab bz — g(a+z)b (

ot = g*°g mod p),

so the two most significant bits can be given by the oracle:
faolet]p) = O(g,9°*7, g").

Repeating the previous experiment, and checking fo(|at]|p) < f2(lvtlp), k times, we con-
clude that the error probability is at most 27*.

We consider now the more general situation, as stated in the theorem. The algorithm
has to be modified slightly to accommodate the fact that the multiplicative order T of g is
not necessarily p— 1 any more, and that gcd(b, T) may be greater than 1. Other than that,
the proof is again based on a counting argument.

In this case, we select, once and for all, r € [1,T] and let g, = g**" (mod p). The order
of g, is T/ ged(b+ 7, T). Now,

T
S pl/3+e/2
ged(b+r,T) — b =
(6) ged(b+7,T) < Tp~Y/3=</2

The probability that Equation (6) does not hold is at most 7(T)T~'p'/3+¢/3 where 7(T) is
the number of positive divisors of T. As 7(T) = O(T?®) for any & > 0, we have that Equation
(6) is violated with probability at most

0 (p1/3+e/2T71+5) -0 <p676/2) )

Since this holds for any § > 0, we see that the probability, over the random choice of r, can
be made O(p~°) for some £ > 0.

Thus, with probability at least 1 — O(p—¢), we now have an element g, of multiplicative
order at least p'/3+¢/2. We now proceed as in the simple case, and select z € {0,...,T — 1}
uniformly at random. We have

9 = ¢ (modp) =
gabg(u"—i-:c(b-{—r) = gcgar+z(b+r) (mod p) —
g(a—l—z)(b—i-r) = gc—i-argm(b—i-r) (mod p) —
grg;r = ¢ g7 (mod p).

As in the simple case, we can compute vy = [g°T%"|,, and t = |g%]|,. Of course, the
value at = g¢*® is unknown, but we observe that it is a Diffie-Hellman key, since g2*+% =
g(@t2)+7) (mod p), and therefore the two most significant bits of |g%gZ?|, are given by a
call to the oracle:

f2(let]p) = O(g, 9", g"*7).

It remains to show that for a # v (equivalently, [g?®|, # |g°|,), with probability exponen-
tially close to 1/2, fa(lat],) # f2(lvt]p)-
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Suppose fao(lat|p) = f2([vt]p) = B. Then with exactly the same reasoning as in the
simple case, we have

M =y @odn, ve L2 u (-2 e,

By Lemma 5.1, and the remark following it, we have that the number of solutions to
Equation (7) is
2T(p—-1)
4p
for some § > 0. Thus the probability, over ¢, that Equation (7) is satisfied (i.e., a # 7 but
fa(lat]y) = fo(l7t]p)) is 1/2+ O(T %) = 1/2+ O(p °7%).

Repeating the experiment k times for independent choices of z yields the stated result. [

+0(T™),

6. COMMENTS

The main result of this work is that if the DDH function is computationally infeasible
then the two most significant bits of the DH function are secure. It is interesting to speculate
if this result is the best possible i.e. how likely is it that a one-bit result could be obtained?
In this regard note the following point [4], that it is easy to compute the Legendre symbol of
9% assuming those of g* and g° are known. Thus knowing such information is not entirely
unrelated to determining the DH function. While this observation is considerably weaker
than the one-bit result sought, it does seem to indicate caution in conjecturing that the
most significant bit of g is as difficult to determine as the DH function itself.

Another interesting question is whether a deterministic reduction of DDH to the problem
of computing the two most significant bits of DH exists. For example, given g2, g*, and g°
we can form the sequence

vo=9% yi=y;, (modp), i>1.
A related sequence is
zo=g% ;=27 , (modp), i>1.

Of course, {z;} cannot be computed, but we have access to the 2 most significant bits of
each element through the oracle, since

To = DH(g“,gb), and z; = DH(gT“,gb).

The two sequences become eventually the same only under very strict conditions on zoy and
Yo. Suppose, for instance, that p — 1 = 2q, where ¢ is odd, and let k£ be the least index
such that z; = yx (mod p). Then zi_, = yi_, (mod p). By the choice of k we have
ZTp—1 Z yp—1 (mod p) Also z_; is by construction a quadratic residue mod p, while —yg_1
is not (note that -1 is not a quadratic residue since there are no elements of order 4 in ),
S0 Tp—1 Z —Yk—1 (mod p). We conclude that our assumption was false — unless of course
k =0 in which case the two sequences are identical. Using similar arguments one can easily
show that if a higher power of 2 divides p — 1 then either the two sequences collide very
early, or never do. Is comparing the two (or perhaps only one) most significant bits of
successive elements in the sequences a good strategy for deciding whether they are identical
or not? We note that in the case that a higher power of 2 divides p — 1 and ¢° is chosen
so that zy = yx (mod p), for some k (take it to be least), then zx_1 = —yr—1 (mod p), so
the elements zj_1 rem p and yj—1 rem p differ at the most significant bit. So, if the two
sequences collide, they do so early, and the difference can be detected by the most significant
bit only.
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A resolution of the problem along these lines would be of great interest and there clearly
remain interesting questions to pursue.
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