The Generalized Weil Pairing and the Discrete
Logarithm Problem on Elliptic Curves

Theodoulos Garefalakis

Department of Mathematics
Royal Holloway
University of London,
Egham, Surrey, TW20 0EX, UK
theo.garefalakis@rhul.ac.uk

Abstract. We review the construction of a generalization of the Weil
pairing, which is non-degenerate and bilinear, and use it to construct a
reduction from the discrete logarithm problem on elliptic curves to the
discrete logarithm problem in finite fields, which is efficient for curves
with trace of Frobenius congruent to 2 modulo the order of the base point.
The reduction is as simple to construct as that of Menezes, Okamoto,
and Vanstone [16], and is provably equivalent to that of Frey and Riick
[10].

1 Introduction

Since the seminal paper of Diffie and Hellman [8], the discrete logarithm problem
(DLP) has become a central problem in algorithmic number theory, with direct
implications in cryptography. For arbitrary finite groups the problem is defined
as follows: Given a finite group G, a base point g € G and a point y € (g) find
the smallest non-negative integer £ such that y = g¢.

In their paper, Diffie and Hellman proposed a method for key agreement,
whose security required that DLP be hard for the group (ZZ/p)* of integers
modulo a prime p. This is the multiplicative group of the finite field IF,. Con-
sidering an arbitrary finite field IF, instead, the method can almost trivially be
extended to work in the multiplicative group of IF,, where ¢ is a prime power.
The security of the protocol now requires DLP to be hard in this group.

The result of the efforts of a number of researchers was the development of
the index calculus method [1, 3,6,11,15,18] and later the number field sieve and
the function field sieve [2, 4, 7,12]. The methods are designed to compute discrete
logarithms in any finite field, and are particularly efficient for finite fields of the
form IF, with ¢ = p a prime, or ¢ = p™ with p a small prime and n large. In both
these cases, the above methods run in subexponential time: the index calculus
method in time exp((c1 +o(1))(log q)'/?(loglog q)/?), and the number field and



function field sieves in time exp((c2 + o(1))(log ¢)'/? (loglog q)*/3), where ¢; and
c2 are small constants.

The above developments, led Miller [17] and Koblitz [14] to consider alter-
native groups, where the group operation can be efficiently computed, but the
DLP is hard. Their proposal was the group of points of an elliptic curve E over
a finite field IF;, denoted E(IF;). Traditionally, the group operation here is de-
noted additively. Thus the elliptic curve discrete logarithm problem (ECDLP)
is defined as follows: Given an elliptic curve E/IF,, a base point P € E(IF;) and
a point ) € (P) find the smallest non-negative integer £ such that Q = ¢- P.

ECDLP in general remains of exponential time complexity to this day. How-
ever, it was the work of Menezes, Okamoto and Vanstone [16], that showed that
not all elliptic curves offer the same level of security. The authors used the well
known Weil pairing, e, to translate the ECDLP from E(IF;) to the DLP in an
extension field IF;k, which can subsequently be solved using one of the subexpo-
nential methods discussed earlier (MOV reduction). A necessary condition for it
to be efficient is the existence a small integer k such that

1. E[m] C E(IF,x), where m = #(P),
2. mlgF — 1.

The authors were able to prove that for supersingular curves both conditions
hold for k < 6. Subsequently, Frey and Riick [10] proposed another reduction,
based on the Tate pairing ¢,,,. The advantage of this method is that ¢,,(P,S)
is an m-th root of unity for an easily computable point S (in most interesting
cases S = P). Then the only requirement for the reduction to go through is that
m|g® — 1 for a small k. Clearly, this is a less restrictive condition. In fact, one
cannot avoid this condition, as any isomorphism from (P) to a subgroup of I«
implies that #(P) = m|¢* — 1.

Later, Harasawa, Shikata, Suzuki, and Imai [13] attempted to generalize the
method of Menezes, Okamoto, and Vanstone to apply to a larger class of elliptic
curves. Their generalization appeared to be very limited. The main reason is
that no efficient method is known to find a point S € E[m] such that e, (P, S)
is a primitive m-th root of unity, if £ is non-supersingular.

The purpose of this paper is to bridge the gap between the MOV reduction
and the Frey-Riick reduction. We start from a well known generalization of the
Weil pairing, ey (see [5, p.45] [19, p.107]). The construction of the pairing is
as simple as that of the Weil pairing, but has the nice property of the (more
involved) Tate pairing, namely e, (P, P) is a suitable primitive root of unity.
We show how to construct a group isomorphism between (P) and u,, where
r = #(P) is a prime, and .. is the group of r-th roots of unity. Our construction
applies to elliptic curves E/IF, such that r|¢ — 1, i.e., a;, =2 (mod r). For the
cases of interest in cryptography, the order r of P is very close to the order of
E(IF,) (and certainly greater than 2,/g). Then, the condition r|g—1 is equivalent
to a, = 2. We note that our construction can be generalized to work for r|g* — 1
for any k£ > 1. If the degree of the extension k is reasonably small, the resulting



reduction is efficient. We want to stress that the reduction presented in this
work is not a new attack to elliptic curve cryptosystems. It is an alternative,
elementary construction of the reduction of Frey and Riick.

The paper is structured as follows. In Section 2, we review the construction
of the generalized Weil pairing e,, parameterized by an isogeny v, and state the
properties that will be used later. In Section 3, we specialize the isogeny 1 to
1 — ¢, where ¢ is the Frobenius endomorphism. In Section 4, we consider curves
with trace of Frobenius a, = 2, and show how to find a point P’, such that
ey(P, P') is a primitive r-th root of unity. In Section 5, we give an algorithm
to compute the pairing in the case of interest. It turns out that for @ € (P),
the value ey (Q, P) is the multiplicative inverse of the value ¢,(Q, P) of the Tate
pairing used by Frey and Riick. Finally, in Section 6 we show how to obtain a
reduction in the more general case ag =2 (mod r).

2 The pairing

In this section, we review a generalization of the Weil pairing. As for the rest of
the paper, p is prime, and q = p*.

Let E be an elliptic curve over IF,. Also let ¢ : E — E be a non-zero
endomorphisrr/l\ of E, and denote its dual by v,/[; Let T € ker({ﬁ\) — such a point

exists, since 1 is onto. We denote by m the degree of 3. Then, the divisor
D = m(T) — m(0) is principal. Let fr € IF,(E) be a function such that

div(fr) = m(T) — m(O).
We consider now the divisor of fr o).

div(fr o ¢) = div(y* fr) = *div(fr)
=m (*(T) —¢*(0)),

the last equality being true by the definition of ¢* (ZZ-linearity). We note that

Y(T) 9" (0) = Y ew(P)(P)~ > ey(R)(R)

YP=T YR=0

=deg;yp| Y (T'+R)—(R)],

YR=0

where wT’ = T. Here we used the fact that ¢ is an isogeny, and therefore
ey (P) does not depend on P, and equals to deg;(¢). The last line of the deriva-
tion shows that the divisor is principal, since it has degree zero, and it sums
to
[deg;¢)] > T =[deg|T =pop(T) =¢T = 0.

YR=0



So it must be the divisor of some function gr € IF,(E). Thus,

(fr o9) = mdiv(gr) = div(g7'),
which implies that
g1 = frov. (1)

gr is defined up to a multiplicative constant of course. Let now S € ker(¢), and
X any point of E(IF,).

gr(X + )™ = fr(pX +9S) = fr(X) = fropX = gr(X)™.

We define the pairing

-~

ey : ker(¢) x ker(¢) = pm

as
gr(X +5)
ey(S,T) = ¥———. 2
w(81) = @
The above definition does not depend on the choice of X. Indeed, if 7 denotes
the translation by S map

17¢ : E - E
X—»X+S5

then we can write ey (S,T) as
groTs
ey(S5,T) = ——(X),
gr

and the function g7 o 75/gr is constant. To see that, we need to note that
1 =1 o 7g because S € ker(t)). Then,

div(gr o 7s) = 7&div(gr)

=750¢*((T) - (0))

= (¥ o79)"((T) - (0))

=¢*((T) - (0))

= div(gT)a
therefore ey is well-defined. Furthermore, it is an easy exercise to show that the
generalized Weil pairing is bilinear and non-degenerate. The proofs are essentially
the same as in the case of the Weil pairing.
Theorem 1. Let p be a prime, and ¢ = p*. Let E/TF, be an elliptic curve,

1 : E = E be an endomorphism of E of degree m prime to p, and 'l:b\ its dual.
Then there exist a pairing

-~

ey : ker(y) x ker(¢) = fim,

with the following properties



1. Bilinear:
€¢(Sl + SQ,T) = 6¢(Sl, T)€¢(SQ,T),

ey(S,T1 + T2) = ey (S, T1)ey(S, Tn).

2. Non-degenerate:
If ey(S,T)=0 forall T €ker(yp), then T =0.

Remark 1. The pairing in Theorem 1 is defined for any endomorphism v with
the property pfdeg(v). If we specialize ¢ to be the multiplication by n map,
and p fn, then we recover the Weil paring. This justifies the name “generalized
Weil pairing”.

3 A special pairing

In this section, we use the generalized Weil pairing to construct an isomorphism
between a subgroup of E(TF,) and a suitable group of roots of unity in IF,.
Our goal is to reduce the DLP on certain elliptic curves to the DLP in the
multiplicative group of finite fields. The notation throughout the paper is as
follows: A point P € E(IF,) is given, of prime order r. We wish to solve the DLP
in (P) by constructing an efficiently computable isomorphism

(P) — pir-

Most of the ingredients for the proposed isomorphism are present. In partic-
ular, e, maps pairs of points to roots of unity, which form a group. We need
to specialize the isogeny 1, so that ker(y) is related to the group E(IF;). Let
Y =1 — ¢, where ¢ is the g-th power Frobenius automorphism. Then we have
ker(¢)) = E(IF;), and ¢ = 1 — ¢. Also

-~ -~

#ker(y) | deg(y) = deg(y) = #E(IF,) = N,

where the divisibility comes from the fact that

A~ -~ -~ -~ ~.

ker(y) = deg,(¢)) and  deg(y) = deg,(¢) - deg;(¢).

Assuming that p does not divide N, we have a bilinear, non-degenerate pairing

-~

ey : E(IF,;) x ker(¢)) — un.

We stress that this pairing exists and is bilinear and non-degenerate for any
elliptic curve E and any finite field IF,.

The group of r-th roots of unity, u,, is contained in the smallest extension
of Iy, say in IF» such that r|g* — 1. We will mainly be concerned with the case



r|g — 1, i.e., when all the r-th roots of unity are contained in IF,. Then, the
condition reads r|g — 1, or equivalently

a; =2 (modr). 3)

In cryptography, the point P is chosen to have very large order r, close to
the order of the whole group E(IF;). Thus r is of order ¢, which implies that
Equation (3) is equivalent (for such a choice of P) to a, = 2. This will be the
main case in our investigation.

4 Curves with trace equal to 2

In this section, we consider elliptic curves with trace of Frobenius a, = 2. Let ¢
be the ¢-th power Frobenius map. Let ) € #E(IF;). We wish to find the point

¢(Q). For that we consider the following

Q-¢)o(l—¢)=1—¢—¢+][q]

From the above observation, we have that

-~

(1-¢)o(1-$Q=0.

Therefore, N
Q—-9(Q) - (@) +[dQ =0,
which implies N
¢(Q) = [4]@-
We know that ¢ + 1 — a;, = #E(IF,), therefore [¢]Q = [ay — 1]Q. Thus,

#(Q) = [ag —1]Q.
Suppose now that the curve has a; = 2. Then, for every point Q) € E(IF;) we

-~

have (1 — ¢)Q =0, i.e,
E(TF,) C ker(1 — ¢).

Furthermore,

-~ -~ -~

#ker(l — ¢) = deg,(1 — ¢) < deg(1 — ¢) = deg(1 — ¢) = #E(IF,).
This implies that

ker(1 — ¢) = E(TF,).
To summarize, for a curve E with trace of Frobenius a;, = 2, we have a
pairing
ey : B(F;) x B(F,) - px,
where N = #E(IF,;). Note that N = ¢ — 1, and p (the characteristic) does not
divide N. Therefore from Theorem 1 it must be bilinear and non-degenerate.



4.1 A structure theorem

We need to introduce some more notation for this section. The group E(IF;) is
isomorphic to Z/n Z & ZZ [naZZ, with na|nq, and na|g — 1. This means that
#E(IF,) = N = niny. We denote by (T1,T>) a pair of generators of E(IF,). We
recall that P is a point in E(IF,) of prime order r. For the remainder of this
paper, we assume that n; = Ir* r /I and that nsll, i.e., r does not divide ns.
This is usually the case in cryptography, as the point P is chosen to have very
large order. Then (P} is contained in (T7). Our goal is to show that ey (P, P) is
a primitive r-th root of unity.

Lemma 1. There exist points T,S € E(IF;) such that ey (T, S) is a primitive
ny-st root of unity.

Proof. The image of ey (T, S) as T and S range over E(IF,) is a subgroup of pn,
say equal to pq. Then it follows that for all (T, S) € E(IF,) x E(IF,).

1 =ey(T,S)? = ey([d|T, S).

The non-degeneracy of the ey pairing implies that [d]T = O for all T € E(IF,).
In particular, if 7' = T} then it must be d = ny.

Lemma 2. The order of ey,(Ty,Ty) is divisible by r*.

Proof. Let T = [21]Ty + [z2]T> and S = [y1]T1 + [y2]T> be one pair of points
such that ey (T, S) is a primitive nq-st root of unity, which exists by Lemma 1.
Suppose now to the contrary, that r¥ does not divide ey (71,T1). Then

e¢(T, S) =ey (Tl, T1)$1y1 €y (Tl, Tg)wlwew (TQ, Tl)zzm ey (TQ, TQ)ZQ:UQ
Note now that the order of ey (T1,T1) divides ny = Ir*, but by assumption r¥
does not divide it. Therefore, the order of ey (Th,T1) divides Ir¥=1. Obviously,
the orders of ey (T1,T2), €y(T2,T1), and ey (T, T>) divide I. Thus we have,

k—1 k—1

€¢(T1,T1)1Tk_1 = €¢(T1,T2)IT = €¢(T2,T1)1Tk_1 = €¢(T2,T2)IT =1.

Therefore,
k—1
ey(T,8)'" =1,
which is a contradiction, since Ir¥~1 < n,.

Theorem 2. Let P' € E(IF,), be a point of order r®. Then, ey(P,P') is a
primitive r-th root of unity if and only if k < d + 1.

Proof. It is clear that ey (P, P') is either a primitive r-th root of unity or 1. This
is because
ey(P,P')" = ey([r]P,P') = ey(O,P') = 1.



We recall that {P), and (P') are subgroups of (T}). It follows that P = [Ir*~1]T}
and P' = [Ir*~9]T;. Then we have

ey(P, P') = ey([lr" 1Ty, [ir*=4|T1)
_ e¢(T1,T1)l2r2k_d_1

Then Lemma 2 implies,

ey(P,P)=1 <+
2k—d—-1>k <=
k>d+1.

We note, that if 7¢ is the exact power of r dividing N, then the point P’ of the
previous theorem can be computed efficiently using the probabilistic method
described by Frey, Mdller, and Riick in [9]. More importantly, in cryptography
the point P is chosen to have very large order r (practically on the same order
as q). For that reason, we state the following corollary.

Corollary 1. Let P € E(IF,) be a point of order r, such that r* does not divide
#E(IF,). Then ey (P, P) is a primitive r-th root of unity.

We want to emphasize that Corollary 1 is in sharp contrast with the properties
of the Weil pairing. For the Weil pairing, e,.(P, P) for every P € E[N]. In our
case, when k = 1 the value ey (P, P) is not trivial, and in fact is a primitive r-th
root of unity. This eliminates a major obstacle of the Weil pairing approach: The
point that makes ey (P,-) a primitive 7-th root of unity is defined over IF; (in
the case of the Weil pairing it exists in a very large extension, unless the curve
is supersingular). Furthermore, it is known in advance. We have the following
theorem.

Theorem 3. Let P be a point in E(IF,) of prime order r, such that r¢ does not
divide N. Then there is an efficiently computable point P'such that the map

V:<P>_)/J’7‘7 Q'_)ellJ(Qapl)

is a group isomorphism. In particular, if d = 2, then P' = P.

5 Computing the pairing

We turn now to the computation of the generalized Weil pairing. A computation
using the definition directly would result an exponential time algorithm. Thus,
we need some other formula suitable for the computation. Such a formula can be
found using Galois cohomology. This formula, not surprisingly, also provides the
connection between our construction and the Frey-Riick construction that uses



the Tate pairing. Although part of the material of this section is well known, we
choose to include it, in order to keep the paper as self contained as possible.

Let E/IF, be an elliptic curve, and let ¢ : E — E be an isogeny. We start
from the following exact sequence.

0 — ker(y) — E(TF,) - E(T,) — 0. (4)

Taking Gal(IF,/IF,) cohomology, we obtain the following long sequence

0 — E(TF,) N ker(¢)) — E(TF,) -2 E(TF,)
2y HY (G, ker(y)) — H'(G, E(F,)) - H'(G, E(F,)),

where G = Gal(TF, /IF,). We can extract now the short exact sequence, sometimes
called the Kummer sequence for E/IF,,

E(IF,)
YE(IF,)

where H'(G, E(TF,))[+] denotes the subgroup of H'(G, E(TF,)) that is sent to the
zero cocycle class by ¥. The connecting homomorphism § is defined as follows.

Let P € E(IF,), and let Q@ € E(IF;) such that ¢(Q) = P. Then a l-cocycle
representing §(P) is given by

% H'(G, ker(¢)) — H'Y(G,E(F,))[¥] — 0,  (5)

G — ker(1))
o Q7 —Q;

that is
§(P)(0) =Q° — Q.

From this point on, we specialize ¥ = 1 — ¢, the case of interest here. Then
we know that ker(z)) = E(IF,), so the action of G on ker(¢) becomes trivial, and
therefore

H(G,ker(1))) = Hom(G, ker(y))).
Furthermore, Hilbert’s Theorem 90 provides the isomorphism

Iy
()"

q

~ HYG, p,).

Assume further, that a; =2 (mod r), for a prime 7. Then we know that ¢—1 =
0 (mod r), and therefore, IF;, contains all the r-th roots of unity. Denote by p,
the group of r-th roots of unity in IF,. Then G acts trivially on y,, so

Hl (GJ :uT) = Hom(Ga l‘l"")J



and we have the isomorphism
Ok I, /(IF))" — Hom(G, )
b- (IF;)" = (o~ B7/B)
where b € I, B € Tq*, and " = b. In other words, for some b € IF;, §x(b) is a
homomorphism from G to u,, and

_ 7
=

Then it can be shown (see [19, Section X.1] or [5, Section V.2]), that there exists
a pairing

dk (b)(0) (6)

Fy

()"

_ E(IF,)
B Em,)

x ker(¢)) —

such that
61/)(6(5)7 T) = 6K(B(Sa T))

We note, that §(5) is not a point in ker(¢)), and dx (B(S,T)) is not an r-th root
of unity. The above relation is to be interpreted as:

Forany o €G, ey(8(S)(0),T) = dx(B(S,T))(0). (7)

The crucial thing is that the bilinear pairing B can be computed efficiently, at
least in the case of interest. In fact, if T € ker(«)) is a point of order r, and
S #T, then

B(S,T) = fr(S) (mod (IF;)"),

where fr is a function with divisor
div(fr) =r(T) — r(O).
If T =5, then we can use bilinearity to obtain
B(T,T) = fr(-T)"".
More generally, for any point X # T we have

B(S,T) = B(S+ X — X,T) = B(S + X,T) B(-X,T)

—B(s + X, 1) BT = 2T

We recall that now that our problem is the following: Given points P,Q €
E(IF,), with #(P) = r, we want to compute ey(Q,P). We deal with elliptic
curves with a; =2 (mod r). From Equation (7) we have

ey(6(5)(0), P) = 6x(B(S, P))(0), (8)



where §(S)(g) = R° — R for some point R such that ¢¥(R) = S. o
If we choose o to be the g-power Frobenius automorphism in G = Gal(IF, /IF,),
and S = —(@), then we have

¢(R) = R° forany R€ E. 9)
Also,
P(R)=S5 =
R—¢pR)=8S =
$(R)—R=-5 =
R -R=-§ =
6(S)(0) = Q-
Thus, Equation (8) has become
ey(Q, P) = 6k (B(=Q, P))(0), (10)

where ¢ is now fixed (and equal to the Frobenius automorphism).
It remains to compute dx (B(—Q, P))(c). We recall from Equation (6) that

5k (B(—Q, P))(0) = %

where
A" =B(-Q,P)=B(Q,P)™" = fp(Q)"" (mod (F;)").
We hayve, g g
o2 _ g1
F=p5 "7

Therefore, ik (B(—Q, P))(0) can be computed as

fp(X) (¢-1)/r
fr(X + Q)) ’

for any point X € E(IF,), X # P. Putting everything together, we have

fP(X) )(4—1)/7‘
fP(X+Q) .

Equation (11) can now be used to compute the value e (Q, P). One first com-
putes fp(X + @) and fp(X) using repeated doubling. The point X has to be
chosen suitably, so that the points X and X + @ do not appear in the support
of the divisors of the functions that appear in the computation. Those functions
have divisors with support contained in (P}, so one wants to avoid X € (P).

51 (B(~Q, P))(0) = (

es(Q,P) = ( (11)



Thus one may choose X € E(IF,), which in the case g—1 > r yields a useful point
with probability at least 1/2, or one may even choose X € E(IF,2), which yields
a useful point with probability at least 1 — 1/q. The algorithm for computing
the classical Weil pairing was first given by Miller. An elegant presentation of

(¢-1)/r
the same algorithm is contained in [9]. The value (%)

is computed
using repeated squaring in IF,.
Finally, it is interesting to note that for elliptic curves with a; =2 (mod r),

and if P is a point of order r, then

ey(Q, P) = ¢-(Q, )™,

where ¢, is the Tate pairing, used by Frey, Miiller, and Riick in [9].

6 Curves with trace congruent to 2

We can relax the requirement a, = 2 a little, and assume only that a, = 2
(mod 7). This is equivalent to say r|g — 1. Then, it is not in general the case that
ker(1 — qg) = E(IF,). However, if in the above derivation we take @ € (P). Then
we conclude that

#(Q) = [a, - 1]Q = Q,

because a; =2 (mod n) and [r]@ = O. Thus, we have
(P) C ker(1— g).

For simplicity, we will only consider the case that no higher power of r divides
N = #E(IF,) — which is the only interesting case in cryptography. Then we
claim that ey (P, P) is again a primitive r-th root of unity.

-~

Lemma 3. There exist a point S € ker(1— ¢), such that ey (P, S) is a primitive
r-th root of unity.
Proof. 1t is clear that ey (P, S) is an 7-th root of unity. Furthermore, as the point

S ranges over ker(l — ¢), the values ey (P, S) are in a subgroup of un, say pq.
It follows that for all S € ker(1 — ¢), we have

1 =ey(P,S)? = ey([d]P, S).

The non-degeneracy of e, then implies that [d]P = O, i.e., r divides d. It follows
that the order of ey (P, S) is exactly r for some point S.

As we pointed out in Section 3, we have N = # ker(1 — <$) |N. We also showed
that r|# ker(1 — ¢). We adopt the following notation: N = Ir, and N = Ir, with
I|I. Also, ker(1 — ¢) is the product of at most two cyclic groups, one of which



-~

contains (P). If (S1,52) is a pair of generators for ker(1 — ¢), it follows that the
order of ey (P,S1) divides 7. If the order was 1, then it would violate the non-

degeneracy of ey, (the argument is virtually the same as in Lemma 2 followed by
Theorem 2 for k = 1). Then, since P € {S;), it will be P = [I']S;. Therefore,

1=ey(P,P)* =ey(P,S1)" %,

which implies that d has to be r (since 72 ,{/ZV ). Therefore, we have the theorem.

Theorem 4. Let E/T, be an elliptic curve, P € E(IF;) a point of prime order r
such that r>fN, and assume that a; =2 (mod r). Then ey (P, P) is a primitive
r-th root of unity.

We also note that the proof given in Section 5 goes through in this more gen-
eral case word by word. Therefore, the algorithm of the previous section works
in the case a; =2 (mod r) as it is.
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