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Abstract

This thesis is separated in three main themes:

A) Let Q c R" be an open domain that contains the origin. We find conditions on the potential V which ensure
the nonexistence of H'(Q) positive solutions for linear elliptic problems with Hardy-type potentials. In particular, we

prove the nonexistence of nontrivial solutions in H'(Q) for the equation

(n-27 u

—-A
T e

+bVu,

where b > 0 is the best constant in the inequality

2
f |V¢|2dx> ) fg l‘%dﬁb fg Véldx, V¢ € CT(Q).

The results depend on an integral assumption on the potential V and what is really of interest is that under the same
assumption on V, there is no improvement of the inequality. This result goes against the folklore fact that if there is no
minimizer for an inequality, then we can improve it. We also give an example establishing that this integral assumption

on V is optimal (see Chapter 3).

B) We prove Hardy and Hardy-Sobolev inequalities involving distance to the boundary of domains with infinite inner
radius. More precisely we deal with exterior domains, i.e. complements of smooth compact domains not containing

the origin. We introduce the following new geometric condition on Q

Vd(x) - x S

—Ad(x) + (n - I)T 2 U,

where d denotes the distance function to the boundary of Q. We prove that under this condition the following Hardy-

Sobolev inequality for n > 4 holds:

n=2
fIVu|2dx— —f —dx > C fluln%dx) ' , YueCy.

The case n = 3 is different, we need to assume that Q satisfies the above condition with strict inequality. Then we prove

the following Hardy-Sobolev type inequality

2
f VuPdx— - f ez f e |6dx) . VueCT@,
a 4 Jo d?

where X(1) = (1 +Inn)™!, 0 < D < inf{|x] : x € 6Q}. Moreover, the power 4 on X can not be replaced by a smaller

power.

We also obtain Hardy and Hardy-Sobolev inequalities for domains above the graph of a C!»! function (see Chapter
4).



C) We prove boundary Harnack type inequalities for positive solutions of the problem

1
u,:Au+Z% in Qx(0,T]

u=0 on 0Q
u(0,x) = up(x) in €,

when Q is an exterior domain without posing any geometric assumption on Q. Then we prove heat kernel estimates for

this problem for small times (see Chapter 5).
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Chapter 1

Overview

In this chapter we present our basic results in this thesis. In section [I.T] we present theorems on non-existence of
solutions to elliptic problems involving Hardy type potentials with the distance taken from a point. In particular we
state our main results in [GK]]. In section[I.2]we will state new Hardy and Hardy-Sobolev inequalities involving distance
to the boundary of domains having infinite inner radius. Finally, in section [I.3] we present the parabolic problems
involving Hardy type potentials with the distance taken from the boundary of domains having infinite inner radius. We

present new sharp two side estimates for the heat kernel of these problems.

1.1 Distance From a Point

In this section we assume that Q is an open bounded domain in R"; n > 3, containing the origin.

The classical Sobolev inequality asserts that

n=2

f Vuldx > S, (f |u|n2-"zdx) L VueCT®M,
Rﬂ Rll

r5)
T(n)

The classical Sobolev inequality (for some constant ¢, < S,) can be proved by the usage of the classical Hardy

2
where the constant S,, = 7mn(n — 2)( )” is optimal.

inequality

-2 2 2
VuPdx > (”—) f Y dx, YueCRM,
R

o 2 . P

where the constant (%)2 is optimal. The proof of the classical Hardy inequality is very simple:

o< [

We consider now the following minimizing problem

2 2

B 2 n—2\2 u o
= | 1w dx—(T) e YueCRED,

n-2 x
Vu+— =
TR

) fQ|Vu|2dx

A= inf =———.
ueCy () fQ de

(=2
1

Then it is well known that, 4; = and this constant is not attained in Hé (€Y) or equivalently the corresponding

Euler-Lagrange equation

_ (=2* u .
—Au == nEe in Q
uz0 in Q,

1



2 1. Overview

has no nontrivial Hé(Q) solutions.

The fact that the best constant is not attained suggests that one might look for an error term in

-2 2 2
(LL1) f|vu|2dxz (”—) fu—dx, Ve CR(Q).
Q 2 a lx?

Indeed, Brezis and Vazquez [BV]] improved inequality (1.1.1)) by adding a positive term in the right hand side.

-2 2 2
(1.1.2) f|vu|2dxz("—) fu—zdx+Cqu2dx, VueCy@),
o 2 o |x] o

and

— 22 2 ;
(1.1.3) fIVu|2dx2(n—) f”—2dx+1<(f |u|de)
Q 2 Q | Q

In (1.1.3) we assume that | < p < n%”z The constant Cg in (1.1.2) is given by
2. 2 o2
Ca = zgwy Q7

where w, and |Q)| denote the volume of the unit ball and Q, respectively, and zo = 2.4048... denotes the first zero of the

Bessel function Jy(z). The constant Cg is optimal when € is a ball. But again the minimizing problem

2 2
- fg|vu|2dx—(%) Jy tdx

Cq =
ueCs (Q) fQ wldx

>

has no Hé(Q) minimizer or equivalently the corresponding Euler-Lagrange equation

oy .
—Au=U2 1 4 Cou, in Q

T P

uz0 in Q,

has no Hé () solutions.
Hardy inequalities as well as their improved versions are used in the study of the solutions of semi-linear elliptic

equations. More precisely, Brezis and Vazquez [BV]] firstly applied these inequalities in Gelfand problem

—Au = Ae", in Q

uz0 in Q,

(1.1.4)

where A is a positive parameter. It is well known that there exist a positive number A* > 0 such that the problem (T.1.4)
has H(l)(Q) solution for 0 < 4 < A%, while no Hé(Q) solutions exist for A > A*. In addition, for A = 2(n — 2) and

Q = B(0, 1); the unite ball with center at the origin, one has the singular solution
ui(x) = 21In|x| € H)(B).

The “linearization” of problem (I.1.4) leads to the operator involving Hardy-type potential

2(n-12)
|x[?

Lyu=-Au- u.
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The authors in [BV] observed that 2(n — 2) < @, for n > 10 and they used this fact and 1| to prove that u; is
an extremal solution i.e. it is a solution of (I.T.4) with 2* = 2(n — 2). For the case n < 9, they showed by (I.I.I)) that
2(n —2) < A* i.e. u; is not an extremal solution.

Another problem which use Hardy inequalities is the study the solutions of

—Au = AufP ;p> n%, in B(0,1)
uz0 in Q.

(1.1.5)

The above problem has the singular solution for A = %1 (n - ZTPI)
P P

2
w = |x71 = 1.

The "linearization™ of problem (T.1.5) leads to operator

Lou = ~bu— —L—(n- =L
" —1( )|x|2

The authors in [BV] used again the improved Hardy inequality (T.T.2)) to prove whether or not the singular solution u,
is an extremal solution of (I.I.5). For further applications of (I.1.2) see [VZ] and [DDI]|. Also the improved Hardy
inequalities (T.1.2) and (T.1.3) have been useful in the existence and asymptotic behavior of the heat equation with
singular potentials see [VZ] and [DD1]].

Brezis and Vazquez [BV] posed the following questions (cf. Problem 2, Section 8): In case Q is a ball centered at zero,
are the two terms on the right-hand side of (I.1.2)) just the first two terms of a series? Is there a further improvement of
(L1.3)?

The answer was given by Filippas and Tertikas in [FT]. In particular, they proved the following Hardy-Sobolev type

inequality with critical exponent

n=2

2\2 u? -0 |y
) flxlzdx—i-C(fX”z (—)Iuandx) Y ())

where X;(f) = (1 —In#)™' and D = Sup,cq 1x|. Also, they showed that the estimate in (1.1.6)) is optimal in the sense,

2(n-1)

that X,"* can not be replaced by a smaller power of X;. In addition, it has been recently established in [AFT] that the
optimal constant C in (L.1.6) is

(1.1.6) f VulPdx > (
Q

2n-1)

C=(n=-2)"" S8,

2
where S, = mn(n — 2)(%) " is the Sobolev best constant.

By inequality (I.1.6), the authors in [FT] showed that for each non-negative potential V that satisfies

(1.1.7) flVl ¢ "(m)d < oo,

there exists a positive constant b such that the following inequality is valid

—2\2
(1.1.8) f|vu|2dxz(”T) f| |2dx+bfVu2a’x, Vue Q.
Q X|

Also in [FT], it has been proved that there is no further improvement of (I.I.8) with a nonnegative potential W that

satisfies (T.1.7).

Since we have no improvement of (I.T.8), one would expect that there exists a non-negative potential V' that satisfies



4 1. Overview

the condition (T.1.7) and the minimizing problem

2
- fQIVu|2dx—(";22) fgﬁdx

b=
ueCy (Q) fg Vuldx

bl

has H(l)(Q) minimizer. Or equivalently the corresponding Euler-Lagrange equation

Au="2 by in Q \ {0}
T T4 P ’

uz0 in Q,

(1.1.9)

has Hé (Q) solution. This reasoning is wrong. The authors in [FT]] proved the following more general result
LetV e LZ)C(Q); p>5, V- =max(=V,0) € LP(Q); p > 5, and V" = max(V,0) € L3%°(Q) where L7°(Q) denotes the
Lorentz space with norm

”u”L%"’“(Q) = SSEE(SHX € Q: |ul > s}|?).

Then, the problem has no H,(€) solutions.

By the above result we note here that the existence or not of further correction terms in these inequalities does not
follow from the non-achievement of the best constants in Hé Q).

In our work [Gkl] we managed to relax the condition on V- and moreover we found the optimal one. Our result reads

as follows

Theorem 1.1.1. Suppose for some p > %, the potential V € Lj, (Q\ {0}) is such that holds. We also assume

that V* € L3*(Q) and V- satisfies the condition
f V72X "dx < co.
Q
Then, problem has no nontrivial H'(Q) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,
(1.1.10) f|v—|%xg'dx<oo, Ya>1-n
Q

but

f V72X "dx = oo,
Q

in which case the problem has a solution ¢ € H'(Q) (see Example 1 in Section .

Note that, in problem (T.1.9), we have assumed without loss of generality that V has a strong irregularity only at zero,
since otherwise we could apply the same analysis in any such point. Also, notice that our assumption on V™
implies that V~ has milder irregularity than # near the origin.

Next, setting

_n=2
u=|x""72v,

it is not difficult to check that the inequality (I.1.8) is equivalent to

(1.1.11) f x> |VvPPdx > b f x>V () dx,
Q Q

where the constant » > 0 in (I.I.TI) continues to be optimal. By Theorem [I.I.1] the best constant in (T.I.8) can not
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be achieved by some u € H'(Q). However, Filippas and Tertikas [FT] proved that the best constant » > 0 in (1.1.11)

is achieved for some function v € Wé’z(Q; |x|7"*2). We denote here by Wé’z(Q; |x|7"*?) the completion of Cy (Q) under

the norm 1
2
( f X2 Vwl2dx + f |x|—<"—2>|w|2dx) .

Q Q

We note here that the space WA’Z(Q; [x|7"*2) is slightly larger space than Hé (Q) (see [FT]).
In [FT], the authors obtained the following result:

Proposition 1.1.2. Let V satisfy the condition and let b be the best constant in inequality (I.I.11). Then
inequality (|1 becomes equality for some v € Wo 2(Q; |x7"*2). That is, there exists a nontrivial function v €

WOI’Z(Q; |x|7"*2) which solves the corresponding Euler-Lagrange

div(jx="? Vv) + x| DpVy =0 on Q\ {0}
vz20 in Q.

(1.1.12)

We note here by above Proposition and Theorem[I.1.1] we have that the minimizer of

Jo Vudx - (22)’ Jo 2 dx
ueC°°<ﬂ> f Vuldx

b=

s

belongs to Wé’z(Q; |x|7"*?) but it does not belong to HOI(Q).

We next consider the improved Hardy inequalities for n > 3, which are established in [FT]

n—2)>2 |uf? 1 |M|2 |x]
js; |VM|2dX > % R de-i— Z oI |2 (_)d Yu e H(;(Q)s

e f|u|2 1[I o I
Lledxz Pl RO M T
2(n =2
(1.1.13) + f|u|n2X( )XI(XI(U))) dx)" Vue HYQ)

where the constant }T is optimal.

In [FT], we have again by (1.1.13)) that if the non nonnegative potential V satisfies the following condition

1-n
(1.1.14) flVlz (Xl(m)x1 (Xl(m))) dx < oo,

then the following inequality is valid for all u € Hé ()

2)2 Jul? 1 |u| > 1l
IVuldx —dx + - (—)d
f o lx? 4 Ja lx |2
(1.1.15) + bfVuzdx, Vue HyQ),
Q

where the constant b > 0 is optimal.

Setting
n=2
u=\x"7v,
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then the inequality (I.1.T5]) becomes equivalent to

f e dpar > [ (Mw

Q 4 |x|"

(1.1.16) + b f VI dx, Vv e Wot@ula =),
Q

for the same optimal constant b > 0 as in (I.1.15).
The parallel result to Theorem[I.1.1]is

Theorem 1.1.3. Suppose for some p > 4, the potential V € Lj (Q\ {0}) is such that (I holds. We also assume
that V* € L3*(Q) and V- satisfies the condmon

f V&t (me)xl (x1<@>)) dx < oo

div(x|""=2 Dv) + 1X2 v x|TDp VY = 0 on Q\ {0}

LI
v=0 in Q.

then problem

has no nontrivial W2(Q; |x|7*?) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,

f|V| (Xl(—)) (X1 (Xl(u))) dx <o, Ya>1-n
f |V|2 (Xl(_)Xl (X](u))) dx = oo

in which case the problem (1.1.9) has a solution ¢ € H' () (see Example 1 in Section [3.2).

The above result can be inducted. Set first

but

|x] |x] |x]

ulld) = I3~ F X 2(—)X 2(—) 2(—)

and ¢p(x) = I" —=, where Xi(7) := X;(Xx-1(?)), for k > 2. We next introduce a new function space which is the

appropriate settmg in our analysis. We denote by W(;’Z(Q; q)l%_l) the Hilbert space which is the completion of C7(€2)

1
2
( f o7 uldx + f ¢§_1|Vu|2dx) :
Q Q

under the norm

Then we have

Theorem 1.1.4. Suppose for some p > 5 the potential V € L‘Z) QN A{0}) is such that (??) holds. We also assume that
V* e L3°(Q) and V™ satisfies the condition

k+1

f|v E (]_[X)l Ndx < 0.
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Then the problem

—div(¢? | Vv) = 1 X7 Xy - X g + bV§? v, in Q\ {0}
v=20 in Q,

(1.1.17)

has no nontrivial W-(Q; qﬁ_ \) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,

k
f |V7|%(n X)'"X¢ dx < o0 Ya>1-n,
BI(O) i=1

but
k+1

[ o= o
Q i=1

in which case the problem (1.1.17) has a solution ¢ € W'*(Q; ¢¢_,) (see Example 2 in Section [3.2).
Let us mentioned that the main tool in proving the above Theorem is the following k-improved Hardy-Sobolev inequal-
ity obtained in [FT]

v

2 (n—2)>° IMI2 IMI2 le 2 X o X
LIVu|dx 7 QW 42 II2 XA(= =) (D)dx

2n— 1) n=2

f|u|“‘° Xl(m)xz(m) Xk+l(|X|)) dx) ", Vue HY(Q),

+

where the constant % is optimal.

1.2 Distance From The Boundary

The Hardy inequality in half space R} = {(x’, x,,) : x, > 0}; n > 2 asserts that

|Vul?dx > ~ f —dx, Vue CyRL),

R"

where the constant % is optimal. Note here that x, = d(x) is the distance function in R}. If we now restrict in an open

set Q with Lipschitz boundary the Hardy inequality reads as

f [Vul>dx > ,ugf —dx, YueCyQ),

where the constant uq € (0, 4] (see [MS] and [MMP]). We note here that there exist domains Q such that o < 3 (see
[MMP]). However if the domain Q is convex then the constant ug = Z (see [MS]] and [MMP])). Also Davies in [D2]

introduced the weight function

1
2

n—1- 1
(1.2.18) Dg(x)z(nIS g 'fs Wde) ,

where d,(x) := inf{[t] : x + te € Q°} for e € $"~! and he proved for any domain Q ¢ R”"

f |Vul*dx > - —dx Yu e Cj(Q).
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The relation between Dq and the distance function d is
d(x) £ Dg(x) if Q is convex.

This follows by some elementary geometric considerations.
It is clear that Hardy inequality holds in an open domain Q with the best constant %, if and only if we make some
geometric assumption on Q. But it is not clear if Hardy inequality with best constant i is valid only for convex do-
main. Indeed Barbatis, Filippas and Tertikas [BFT2] relaxed the assumption of convexity for the domain Q and they
introduced a global geometric condition on

-Ad > 0.

And they showed that if Q satisfies the above condition then Hardy inequality is valid for ug = i. We note here that
the above condition is equivalent to the convexity of the domain Q for n = 2, but it is a much weaker condition than
convexity of Q for n > 3. Also it has been recently proved that the condition —Ad > 0 is equivalently with the fact that
the mean curvature of the boundary of Q is non-negative see ([[P] and [LLL]).

Brezis and Marcus [BM] have established an improved version of Hardy inequality. They showed that for an open,

convex and bounded domain Q with smooth boundary, there exists a constant

1.2.19 AQ) > ————
( ) ) 4diam*(Q)
such that
2 1 u’ 2 o
(1.2.20) [Vul“dx > - —dx+ AQ) | u'dx, YueCy(Q).
o 4 Jq d? Q

In this paper Brezis and Marcus asked whether the diameter of Q in (1.2.19)) can be replaced by an expression depending
on [Q| := volQ, namely, whether 1(Q) > cIQI’% with some ¢ = c¢(n) > 0. The answer was given by M. Hoffmann-
Ostenhof, T. Hoffmann-Ostenhof and Laptev [HHL]. They showed that

n=2 2
SISl
i@z oy = B
Qs 4
In particular if n = 2 then ¢(2) = 7.
Filippas, Maz’ya and Tertikas [EMaT?2] proved inequality (T.2.20) for an open convex domain with smooth boundary
which has finite inner radius. In particular, they showed that (I.2.20) is valid for some constant A(€2). Also they showed

that there exist ¢;(n) > 0 and c,(n) > 0 such that

c1(n) SAQ) < Cz(n)g

SUp,co d2(x) SUP e d2(x)

The question here is, if there exist domains Q which satisfies a geometric assumption (e.g. convexity) such that we can
add a Sobolev term with critical exponent in the right hand side of the Hardy inequality. For instance in half space R} ;
n > 3, Maz’ya [Mal proved the Hardy-Sobolev inequality

n=2

1 2 2n n
Vuldx> ~ | Lax+ c(f |u|mdx) . Vue CO®),
R? 4 Jrn X2 RY

for some constant C,, > 0 which depends only on n.

Filippas, Maz’ya and Tertikas [FMaT ] managed to prove this amazing result for a family of open sets. More precisely,
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they showed that if Q is an open domain with finite inner radius and it satisfies —Ad > 0. Then there exist a constant
Cq such that

n-2
(1.2.21) fIVulzdx>—f—dx+Cg f|u|%dx)”, Yu e C3(Q),
Q

(see Theorem 3.4 of [FMaT1])). Recently in [FL] the authors used the weight function D (x) (I.2Z.T8) to prove that the

constant Cgq, is independent on Q, if Q is convex. In particular, they proved that there exist a constant K,, > 0 such that

1 2 L\
f|Vu|2dx2 —fu—zdx+K,,(f|u|nzTde) VY]
Q 4 Ja Dg, Q

We recall here again that d(x) < Dq(x) if Q is convex.

It is clear here that the Hardy and Hardy-Sobolev inequalities are valid for convex domains or for domains satisfying
—Ad > 0 and having finite inner radius. But it is not clear that these geometric conditions on domains are necessary.
For instance there is no answer if the Hardy and Hardy-Sobolev inequalities hold in Q = B{(0); B1(0) is the unit ball
with center at the origin.

In this thesis we prove the analogue inequalities for domains having different geometric conditions from them which
we have presented above. In particular we deal with two different types of such domains.

Firstly, we deal with exterior domains, i.e. complements of smooth compact domains. For our purposes here, smooth
means C? and we consider exterior domains not containing the origin, for instance B{(0). We note here that an exterior
domain Q can not satisfy the condition —Ad > 0. Thus we need a new condition on Q. For this we introduce the
following

Vd(x) - x >0

(1.2.22) —Ad(x) + (n—1) >
|x[?

Note that this condition is satisfied in case Q = B{(0).

First we state the Hardy inequality under condition (1.2.22)

Theorem 1.2.1. Let Q be an exterior domain in R" (n > 3) not containing the origin and satisfying condition (|[.2.22)).

Then
f IVu|2dx > — f 7 —dx, Y ueCy(Q).

The constant le is sharp.

‘We note here that the above inequality for n = 2 does not hold, not even with some positive constant in front of the
integral term of the right hand side (see example 2 in section 4.1.2). Intuitively, this happens because for large values
of |x| the distance function to the boundary behaves like the distance to the origin, and thus by (I.1.1) it fails.

Let us now state the Hardy-Sobolev inequalities which we will prove in this thesis.

Theorem 1.2.2. Let n > 4 and Q be an exterior domain not containing the origin and satisfying condition (|1.2.22)).
Then the following inequality is valid.

1 s\
(1.2.23) f|Vu|2dx— - f —dx > C(f |u|n272dx) , YueCy(Q),
Q 4 Jod? o
where the constant C > 0 depends only on Q and the dimension n.

We stress again that the domains referred in the above theorem are of infinite inner radius.
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The case n = 3 is different, as we can see from the following Theorem.

Theorem 1.2.3. Let n = 3 and Q be an exterior domain not containing the origin and satisfying condition (|{.2.22

with strict inequality i.e.

Vd(x) - x o

(1.2.24) — Ad(x) +2
|xI?

Then the following inequality is valid.

1 2
(1.2.25) f|vu|2dx——f”—dxzc(f (' i |6dx) . VueCT(Q),
Q 4 Jo d?

where X(f) = (1 +Int)™!, 0 < D < inf{|x| : x € dQ} and the constant C > 0 depends only on Q. Moreover, the power

4 on X can not be replaced by a smaller power.

We note here that the condition (T.2.24) is necessary, since in the case where Q = B{(0), the inequality (T.2.25) does
not hold (see Example 3 in Section [#.1.2)).

Let us now assume that Q is an open bounded domain with smooth boundary. Filippas, Maz’ya and Tertikas [FMaTl]]

showed the following inequality

1 .\
(1.2.26) f|Vu| dx—-fdzdx+Mfu2dxzc(f|u|ffzdx) . YuecCr(Q),
Q Q

where the constant C depends only on n while M depends on n and Q.
In this thesis we prove an analogue inequality for the exterior domains. Again the inequalities are different in cases

n >4 and n = 3 as we can see in the following Theorems.

Theorem 1.2.4. Let n > 4, o > 0 and Q be an exterior domain not containing the origin. Then there exist constants

C(Q,n) and C'(Q, n, o) such that the following inequality is valid,

1 lz
(1.2.27) fquI dx——fdzd +c’f el f|u|n—°dx . YueC3(Q)

where o > 0.

Theorem 1.2.5. Let n = 3, o > 0 and Q be an exterior domain not containing the origin. Then there exist constants
C(Q) and C’'(Q, o) such that

2
(12.28) fquI dx—— —d +C’fu—dx2C(f ('p') 6dx) . Vue CT(Q),

o 1+ d2+(r
where X(1) = (1 +Int)~!, p = inf{|x| : x € AQ}. Moreover, the power 4 on X can not be replaced by a smaller power.

Note again that the domains considered in the above Theorems are of infinite inner radius.

Next, we deal with domains above the graph of a C!! function. More precisely, let ' : R*"! — R satisfying
the conditions [VI'] < A and I € CLL(R*1). We then call the set

={(x',x,) €R": x, > T(x)},
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a domain above the graph of a C"! function. Note that again such domains have infinite inner radius. An example of
such domain is the half space R} for I'(x") = 0. As we noted above, the Hardy-Sobolev inequality is valid in the half
space for n = 3. This fact leads us to consider domains above the graph of a C!! function as a separate case. Another

reason is that the distance function satisfies

T3 1 ['(x") < d(x) < (x, = (X)),

that is, the distance function does not behave as distance to a point as x,, goes to infinity.

Thus, we have

Theorem 1.2.6. Let n > 3 and Q be a domain above the graph of C*' function which satisfies —Ad > 0 in the sense of
distributions. Then the following inequality is valid

2 n=2

1 n n
f|vu|2dx——f”—dsz(n,A)(fozdx) , VueCT(Q).
Q 4 Jo d? Q

Observe that the constant in front of the critical Sobolev term depends only on the dimension n and A.

1.3 Harnack Inequalities and Heat Kernels Estimates

Harnack inequalities have been extremely useful in the study of solutions of elliptic and parabolic equations. They
are used to prove Holder continuity of solutions, strong maximum principles, Liouville properties, as well as sharp
two-sided heat kernel estimates. In particular in parabolic problems, Harnack inequalities are equivalent to sharp twoe
sided heat kernel estimates. See for instance the books [[Gr1]], [Z1] and [SC2].

Consider the following parabolic problem
(1.3.29) u = Au in Qx(0,T]

Then, we have the following interior parabolic Harnack inequality,

Proposition 1.3.1 ([Mol]). Let u > 0 be a solution of and Q' be a convex subdomain of Q, such that d =
dist(Q',0Q) > 0. Then, there exists a positive constant C, depending only on n such that

— 2 _
u(y,s)Su(x,t)exp[C(Ix o S+1)],
t—s k

forall x, y e Q and all s, t satisfying 0 < s <t < T, where k = min(1l, s, d?).

As we can note in the following proposition, the boundary Harnack inequality is different than interior Harnack in-

equality

Proposition 1.3.2 ([SI). Let Q = Q x (0,T] be a Lipschitz cylinder and I" a compact subset of 0,0 = (0Q x [0,T]) U
(Q x {0}). Suppose Q" = Q' x (s5,t],0 < s < t < T, is a subcylinder of Q such that 8,0 N 8,0’ is compactly contained
in T and (Xo, Ty) is a fixed point in Q, with Ty > t.

Then, for every nonnegative weak solution of u; = Au in Q vanishing on I', we have
u(x,t) < Cu(xo, Ty), forall (x,t)€ Q’,

where C is a constant depending only on Ty — t and Q. Moreover s can be chosen equal to zero if I N (Q x {0}) # 0.
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A reason that we have not a closed formula for these two cases, is that in the proofs of the above propositions, the

authors have not used the properties of the minimizer of

fQ|Vu|2dx
(1.3.30) Ay = inf =——.
uel)(©@ [ uldx

It is well know that the minimizer ¢ € HO1 (Q) behaves as the distance function d(x) near the boundary of . This fact
was used by [Z2]] to prove the sharp two side heat kernel estimate for this problem, that is:

Let u be a solution of

u, = Au in Qx(0,T]
0 on 0Q x (0,T]

u(x, t)

(1.3.31) u(x, 0) u in  Q,

Then there exists a heat kernel A(z, x, y) such that (see [D1]])

u(t. %) = fg Wt x, Yuo()dy,

and h(t, x, y) satisfies

hh=Ah = A in Q x (0, c0)
ht,x,y) = 0 if (x,1) € 0Q X (0, 00) or (y, 1) € 0Q X (0, 00)
(1.3.32) h,x,y) = 6y, in Q.

‘We then have the two side heat kernels estimates

Proposition 1.3.3 ([Z2])). Let Q be an open set with smooth boundary and h(t, x,y) be the respective heat kernel of the
problem (I.3.32)). Then there exist positive constants C and C such that

1/ dx) d(y) 1 e =y
C_1( inl A 1)( Vil A l)t—E exp(——czt Je

Ye N, ¥Yx, yeQ.

d(x) a®y) 1 Calx —yI°
(1.3.33) < h(t,x,y) < C ( A 1)( A 1)7 exp(- 222
Y ! Vinl Vil t2 P t
We note here again that the usage of the eigenfunction ¢ is crucial. Also we note that the asymptotic behavior of the
heat kernel is different for small time than it is for large time.
Using of a minimizer problem like (1.3.30), we can prove boundary Harnack type inequality and then two side heat
kernel estimates for parabolic problems with singular potential.

More precisely, let n > 3 and 0 € Q be an open set with smooth boundary. We consider the following parabolic problem

n—2) u .
u,:Au+( 4)W in Qx(0,T]
(1.3.34) u=0 on 0Q

u(0,x) = up(x) in Q.

We note here that in order to investigate the properties of the solutions of the above problem, we need to investigate the
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following minimizing problem

2 2
IVudx — =2 e
(1.3.35) A= nf Jo — fQ"Z.
ueC(Q) fQ” dx

where A4; > 0 (see [BV]).

It is well known that (see e.g [DD]]) there exists a ground state function ¢ € H!

10c(€\{0}) which solves the corresponding
Euler-Lagrange of (1.3.35)

2
(=2" ¢ _ 44 inQ 6()=0, on Q.

—Ad —
T e

in the weak sense. Also, due to the results in Lemma 7 in [DD]] and using Theorem 7.1 in [DS]] on one hand, and elliptic

regularity on the other, there exist two positive constants C;, C, such that
CldWIX™7 < ¢(x) < Crd()Ix 7,
The authors in [EMoT3]] used this fact and they proved the boundary Harnack type inequality

Proposition 1.3.4. Let u be a non-negative solution of (I.3.34)). Then there exist a positive constant A such that the
following estimate is valid for all x, ye Qand all0 < s <t <T.

u(s,y) < u(t, x) exp(A(1+ t—s N t—s N |x—y|2))’
&) #(x) R? s 1=

where the constant R > 0 is small enough and depends only on 0Q.

(In particular this result is a corollary of Theorem 2.11 in [FMoT3]).

By the boundary Harnack type inequality we have the following two side heat kernel estimates for small times

Proposition 1.3.5 ([EMoT3l|). Let n > 3 and 0 € Q be an open bounded domain with smooth boundary. Let h(t, x,y)
be the respective heat kernel of the problem (I.3.34). Then there exist positive constants Cy, Ca, A1, Ay and T > 0
depending on Q such that

n-2 n-2 d d 2-n n - 2
¢ min((|x| VD 1+ V7, 100 (”)uxnynzfz exp(—a 220 <
< h(t,x,y) <
n=2 n=2 d d 2-n n - 2
< Cy min (<|x| FVDEM+ VDE, w)axuybzrz exp(-4, L2

forallx, ye Qandt <T.
Concerning the large time asymptotic we have:

Proposition 1.3.6 ([EMoT3l|). Let n > 3 and 0 € Q be an open bounded domain with smooth boundary. Let h(t, x,y)

be the respective heat kernel of the problem . Then there exist positive constants Cy, C, and ty > 0 depending
on Q such that

Cip()p()e™" < h(t, x,y) < Crp(X)p(y)e™,

forall x, ye Qandt > t,.
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Another parabolic problem which is widely investigated, is

5

u,:Au+Zﬁ i Qx(0,T]
(1.3.36) u=0 on 0Q

u(0,x) = up(x) in Q.

As we refer above, we need to consider the following minimizing problem
2
\Vuldx - ; [, %

1.3.37 A =
( ) ' ecr@ fgbﬂdx

where 1, € R (see [EMaTT]). It is well known that there exists a ground state ¢ € H! () which solves the correspond-

loc
ing Euler-Lagrange of (1.3.37)

1
—-A¢ — Z% =0, inQ, ¢(x)=0, on 0Q,

in the weak sense. Also there exist positive constants C; and C; such that
C1d* (x) < ¢(x) < Cad> (),
near to the boundary (see [DD]). Filippas Moschini and Tertikas [FMoT3] used this fact to prove the following bound-

ary Harnack type inequality

Proposition 1.3.7. Let u be a non-negative solution of (I.3.34). Then there exist a constant A such that the following

estimate is valid for all x, y € Qand all0 < s <t < T.

u(s,y) < u(t, x) exp(A(l N t—s N t—s N |x—y|2))’
&) B(x) R? s t—s

where the constant R > 0 is small enough and depends only on 0QQ.

(In particular this result is a corollary of Theorem 2.11 in [FMoT3|])
Also they proved the following sharp estimates for the heat kernel of problem (1.3.36)

Proposition 1.3.8. Let Q be an open bounded set with smooth boundary and h(t, x,y) be the respective heat kernel of
the problem ([I.3.36). Then there exist positive constant Cy, C», Ay, As, and ty depend on Q such that

cl[min(%, l)min(d—f/yi), 1)]%3 eXp( ke —tylz)

< h(t,x,y) < Cz[min(d(—\;), l)min(d(_\/y;)’ 1)]2_; exp( A |x —tYIz )’

forany x, ye Qandt<t,

Also the authors in [FMoT3]] proved for convex domains and large enough 7 the following Proposition

Proposition 1.3.9. Let Q be an open bounded set with smooth boundary which satisfies —Ad > 0 and h(t, x,y) be the
respective heat kernel of the problem . Then there exist constant C; > 0 such that

1 1 1
e-ﬂlfc—d%(x)df(y) < h(t,x,y) < e MO dE (x)d? ().
1
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forany x, ye Qandt < t.

We note here that the eigenvalue 4; of (1.3.37)) is positive since Q is convex (see [BMI]).

In this thesis we prove boundary Harnack type inequalities for the solutions of problem (1.3.36) where Q is an ex-
terior domain not containing the origin. We also prove two side estimates for the heat kernel for small time. We remind
here that an exterior domain is the complement of a smooth compact domain. For our purposes here, smooth means C?
and we consider exterior domains not containing the origin, for instance B{(0).

We note here that the problem (1.3.36) in exterior domains is a combination of (I.3.36) and (1.3.34) in bounded do-

mains. The reason is that for large values of |x| the distance function to the boundary behaves like the distance to the

origin.

Also since the exterior domain is unbounded we need to investigate the following minimizing problem

o ViPdx -1

(1.3.38) A1 = ] P
ueCx(Q) fQ#

where o > 0.

We prove in this thesis the following theorem

Theorem 1.3.10. Let n > 3 and Q be an exterior open set with smooth boundary not containing the origin. Then the
constant 11 o is finite. Also there exist a ground state ¢ € Hlloc(Q) of corresponding Euler-Lagrange of

i.e. it is a weak solution of

1¢ ¢ .
—A _ZE:/II—I—i-d“‘T in Q, =0 on 0Q.
Finally there exist positive constants Cy, Cy and a,, = @ + % - }‘ such that
e Jt
C S <¢(x) <Gy z(x),
| |
for any x € Q.

Clearly this problem is a combination of the problems (1.3.36) and (1.3.34) in bounded domains.
Using the above theorem and the program initiated by A. Grigor’yan and L. Saloff-Coste (see [Gr4], [GSC], [Gr2]

and [Gr3]) in non-compact Riemannian manifolds (see also [SC1] for a nice survey), we prove the following boundary

Harnack type inequality

Theorem 1.3.11. Let u be a non-negative solution of (I.3.36). Then there exist constant A such that the following

estimate is valid for all x, y e Qand all0 < s <t < T.

u(s,y) < u(t, x) exp(A(l+ t=s E=S |x—y|2))’
o) ¢(x) R s t=s

where the constant R > 0 is small enough and depends only on 0Q.

With this theorem at hand, we are able to obtain two side estimates for the heat kernel A(z, x, y) of the problem (1.3.36)

in an exterior domain.

Theorem 1.3.12. Let Q be an exterior open set with smooth boundary not containing the origin and let h(t, x, y) be the
respective heat kernel of the problem ([[.3.36). Then there exist positive constant Cy, C», A1, A,, and ty depend on Q
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such that . (d(x) _(d©) i, b — yP2
Cl[mln(v,l)mm(v,l)] 5 exp(—A, t )
< h(t,x,y) < Cz[min(%, l)min(d_\(/y;’ 1)];t‘5 exp( A |x —IYIZ )’

forany x, ye Qandt <t,.



Chapter 2

Some Basic Methods

In this chapter we present some known results and we give some proofs of them for convenience to the reader of this
thesis. Especially, in section[2.1| we prove the inequality [I.T.6|which proof is in [ET]. Finally, in section[2.2 we present

a simple elliptic problem and we explain the Moser’s iteration of this problem.

2.1 Hardy and Hardy-Sobolev Inequalities in Bounded Domain

In chapter 4 we prove Hardy and Hardy-Sobolev type inequalities in unbounded domain. Thus in this section we would
like to present some proofs in bounded domains which will help familiarize the reader with the proofs of these type
inequalities.

First we prove the following Proposition,

Proposition 2.1.1 ([FT]). We assume that, n > 3 and Q is an open bounded domain which contains the origin. Then
the following inequality is valid
n=2

) 2 2 - " =
@2.1.1) f|Vu|2dx2(n ) fu—dx+C(fXZ(nle)(M)mﬁfzdx) . VueCoQ),
Q 2 o AP Q D

where X(f) = (1 =In®)™" and D = Sup,cq Xl
To prove Theorem[2.1.1] we need the next Lemma, the proof of which can be found in [Mal.

Lemma 2.1.2. Let A(r), B(r) be nonnegative functions. Such that 1/A(r), B(r) are integrable in (r, ) and (0, r),
respectively, for all positive r < co. Then, for q > 2 the following inequality

(2.1.2) [Ls B(t)lu(t)lth]; < C[ fOSA(t)lu'(t)|2dt]; ,

is valid for all u € C'[0, 5] such that u(s) = 0 (or vanish near infinity, if s = o), if and only if

1=

2.1.3) K= sup [ fo rB(t)dt];[ f S(A(t))’ldt] < oo,

re(0,s)

The best constant in satisfies the following inequality

(2.14) KsCSK(q’%l)zqé.

17
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proof of Theorem 2.1.1: Suppose first that Q = B;(0). Following [VZ] we decompose w into spherical harmonics
(since u € C;(Bp(0))) to get

e

u(x) = ) () fnl0),

m=0

where f;, are orthogonal in L*(S"") normalized by — fsn L (@) fu(0)dS = Oy In particular fy(o) = 1 and the first

term in the above decomposition is given by

ug(r) =

1
; f u(x)ds ..
nwur"=" Jap,

The f,,’s are eigenfunctions of the Laplace-Beltrami operator (V) with corresponding eigenvalues c,, = m(n — 2 + m),

m > 0. An easy calculation shows that,
2.1.5) |Vu|2dx = f Va2 + Z Cm |x|2
We next estimate the nonradial part using the inequality

n-2 u? ¢ u,
f Vi >dx + (cm - —)f —mzdx > % (f Vi |>dx + cmf —’"zdx) ,m>1.
By 4 B, Ixl Cm + % By By |xl

Taking into account that ¢,, > N — 1 form > 1

- 2 4n—1 — upl?
Zf Vit | dx+Z(cm—n—)f Sngy > ("2 )( |V(u—u0)|2dx+f lu Z°| dx)
B |x] n B 2 |x]

m=

n=2

of [ 4 G-l ax) "
B

where in the last inequality we have used the Sobolev inequality and the fact that 0 < X < 1. Now, setting uy = |x|‘% w

(2.1.6)

\%

we can easily check that

n—2\2 u? [Vw|?
2.1.7) f VuPdx — (—) f M iy = f dx+ = f V(") Vnldx.
Q 2 a lx? o lx"=2 2 Jo

We next show that the last integral above is equal to zero. Let B, = {x: |x| < &} and S, = {x: |x| = £}. We then write

f V(") Vwidx = f V(x| 2)Vwidx + f V(=) Vwdx.

Q A Q\B.

The integrand in the above integrals is easily checked to be an L! function and therefore the first integral on the
right-hand side tends to zero as € — 0. Concerning the second-integral, integrating by parts and using the fact that

Alx|7"=? = 0 we end up with

-2
(2.1.8) f V(™" 2)Vwldx = (n - 2)s™! f wids, = - f u3ds
Q\B, S € Se

&

-0 as e—-0,

since ug € Ci'(€2).
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It then follows that the last term in (2.1.7) is zero, and the following identity holds:

-2 2 uz \vj 2
2.19) f Vol - (=) f 2 = [ g
Q 2 Q | o |x|*
Using (2.1.9), inequality (2.1.1)) becomes equivalent to
V 2 n—. n ’Lz
(2.1.10) | ledxz C(f Iw]is (M)ztnd ) .
Q X" o |xI”

Now since w is a radially symmetric function, inequality (2.1.10) is equivalent to

-2

1
frlwr|2dr2C(f i 2X(L) ﬁl"zl)dr) ,
0 0

Where D = sup,,q 1x|. We note that the last inequality is valid by Lemma [2.1.2 for A(r) = r, B(r) =

2(n—1) ,

X n— =
X2 &) and

r

q=:= 2 Thus by the last inequality and inequality |D the result follows in the case where the Q is the unit ball.

Consider now the case where Q is a bounded domain. Then, for some R > 0 we have that Q c Bg. Since (Z.1.1)) is true

for any u € C’(Bg) it is true in particular for every u € C;7(€2)

O

Finally, in the following proposition we would like to show how someone can use a geometric condition for a domain

to prove the Hardy inequality.

Proposition 2.1.3 ([BET1]). Let n > 2. We assume that Q is an open domain. We also assume that Q satisfies —Ad > 0

in the sense of distributions. Then the following Hardy inequality is valid

1 2
@2.1.11) fquI2dx2 —f Ldx, VuecCPQ),
Q 4 Jo d?

where the constant 4—1‘ is optimal.

proof: We set u = d 2y, then by straightforward calculation we have

V2 |Vd[? 1
f IVulPdx = f d|VvPdx f [Vd] dx + = f Vd - Vvidx.
Q 4 Q d 2

Now since |Vd| = 1 a.e and fQ Vd - Vvidx = — fQ Adv*dx > 0, we have the desired result.

2.2 The Moser Iteration in a Warm up Problem

In this thesis, Moser’s iteration technique plays a fundamental role. For this reason we present here the main ideas of

this technique in a warm up problem that we took from L. Saloff-Coste [SC1]. As we will see in a moment, it relies on

a certain Sobolev type inequality.

We consider the eigenvalue problem

-Au = Au in Q
(2.2.12) u = 0 on 0Q,
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where Q is an open bounded set. Consider also a solution u € Hé(Q) in the weak sense i.e. u satisfies

(2.2.13) f VuVvdx = A f uvdsx, Vv € H)(Q).
Q Q

We say that A is an eigenvalue of —A provided, there exists a non-trivial solution u € H(;(Q) of (2.2.13).

It is well known that (see [E]) that the set of eigenvalues is countable. Also we have
0< /11 < /12 <.

and limy_c A4 = oo. In addition, there exists an orthonormal basis {¢;};>, of L*(Q) where 0 < ¢y € Hé(Q) is an

eigenfunction corresponding to Ay :

= Ady
(2.2.14) o = 0 on 0Q,

/lk¢k in Q

for k = 1,2, ... Finally, we have by standard elliptic regularity that, ¢, € C*() and ¢ is bounded for any k = 1,2, ...

(see [Ell). The main goal is to prove the following upper bound

Proposition 2.2.1. Let n > 1 and let ¢y be an eigenfunction corresponding to Ay of problem then there exist a

positive constant A, such that

(2.2.15) sup 2(x) < A, A} f \puPdx,
Q

xeQ

To prove the upper bound (2.2.15), it is suffices to use only the following Sobolev type inequality which we call

Moser inequality.

Proposition 2.2.2. Moser Inequality. Let n > 1. Then, there exists a positive constant C,, depending only on v such
that

2
(2.2.16) f IR+ Ddx < C, f |Vf|2dx( f |f|2dx) , VfeCy®n.
n Rn Rn

proof: For the proof of proposition we need to use three cases.
First case n = 1
Since f € C(R), we have

1

- Y v
ZIMf(y)f(y)dyﬂ(fklf(y)l dy) (fRIf(y)I dy)  VxeRo

4( fR If'(y)|2dy) ( fR |f|2(y)dy)-

()

IA

supyer f*(x)

Thus by above inequality we have

2
20142) r a2 2
fR I dxs4( fR £ o) dy)( fR O dy) ,

which is the desired result for n = 1.

Second case n = 2
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First, we recall the following inequality

n

flFTdx < S, ( f |VM|dx)"_ . Y [eCR®Y,
Rn

R

_1
where S, = nnt (F(l + g)) " (see [Mal]). Then by above inequality we have for n = 2

2
f |f|2“+”dxs25n( f IVfIIfIdx) <as, [ 1vfRax f R,
RZ R2 R?. R2

which is the desired result for n = 2.
Third case n > 3.

We recall the classical Sobolev inequality

n=2

(2.2.17) (f |f|f”z)" < C,,f IV f12dx, Vf e H\R"),
R R

By Holder’s inequality we have for any f € C;(R")

n=2

n=2 2
Ry = f |f|2|f|idxs( f |f|f”z) ( f Iflzdx) .
R)X Rﬂ Rn Rﬂ

Now by the last inequality and classical Sobolev inequality (2.2.17) we have the Nash inequality

2
SR Dar <, IVflzdx( f Iflzdx) .
R?X RVI

Rn

We are ready now to prove the upper bound (2.2.13).
proof of Proposition For 1 < p < oo we take v = |¢|*?2¢y in (2.2.13). Then by straightforward calculations

we have

_ 2p—1
(2.2.18) & [ woPrar=p=1) [ 0 v - = | wrpa
Q Q Q

Setting f = |¢|” in (2:2.16)), together with (2.2.18) we obtain

1+2
Q Q

Finally set in the last inequality p; = (1 + %)[ to get

2 i+(—-1)p; ”
Jograr < (142)7 7 ot [[oera)
Q n o
i 2 Zi’zo(ifj)/’/ Dixl
~-~s(cnak)2fo"f(1+_) ( f ¢§) =
n Q

2pini mi oo 2)\ZAUDs; 2
|pu| " dx < (CuA)TT T+ = Prdx.
Q n Q

Note that 377 ,(j - 1)# < o0, Y

IA

IA

A

1
00 _n 2 . Pi+1 2 . . .
=1 =2 and ( fQ || ”‘”dx) 1 = Sup,q @), as i — oo. The desired conclusion
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(2:2.13)) follows. m



Chapter 3

Existence and Nonexistence of Energy

Solutions

Let Q c R" be an open bounded domain that contains the origin. In this chapter we find conditions on the potential V
which ensure the nonexistence of positive solutions for linear elliptic problems with Hardy-type potentials. Especially,

in section we prove the nonexistence of nontrivial solutions in H'(Q) for the equation
—7)2 .
—Au=C2C 0 L pvu,  in Q) {0)

(3.0.1) 4 e
uz0 in Q.

We denote here by H'(Q) the Sobolev space which consists of all functions u : Q — R such that, Vu exists in the weak

1By = f Vi + f dx < oo,
Q Q

The results depend on an integral assumption on the potential V

sense and

f |V‘|L5X11‘”(m)dx < o,
0 D

where X;(¢) = (1 — In7)~!. We also give an example establishing that this integral assumption on V is optimal.

In section we prove the nonexistence of nontrivial solutions in W'(Q; ¢;_) for the equation

—div(¢7_,Dv) = 1X2X, ;- -+ X, ot Vel v, in Q\{0)

v20 in Q.

(3.0.2)

We denote here by W!(Q; ¢;_1) the space which consists of all functions # : Q — R such that, Vu exists in the weak

sense and
f ¢ utdx + f ¢ |Dulrdx < oo,
Q Q
where
R N N
(3.0.3) or(x) = X7 X, —(B)XZ—(B)...Xk_ 5)7

Xi(H)=0-Inn",D= SUpP,cq |, and Xi (1) 1= X (Xi—1(2)), for k > 2. Also we set ¢y = IXI% The results depend on

23
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an integral assumption on the potential V
k+1

(3.0.4) f v | x)' " dx < .
el

We also give an example establishing that this integral assumption on V is optimal.

3.1 Nonexistence H'(Q) solutions

In this section we suppose that n > 3 and Q is an open bounded domain which contains the origin. Also we recall the

following inequality in [FT]

n=2

2 n—2\* (o 2o x|\ o
(3.1.5) L'W dxz(T) LWdHC(LXI 7 (5)|u|n—zdx) . Ve Co(Q),

where X,(1) = (1-In¢)"'and D = Sup,q 1x|. Now we consider a potential V € Li (&) for p > 5 that has the following

properties:

1) there exists » > 0 such that:

-2 2 2
(3.1.6) f Vuldx > (”—) f dx+b f Viddx, ¥ ue C(Q).
Q 2 Q 1l Q

ii) V* € L7*(Q) where we denote here by L3*(Q) Lorentz space with norm

el 302y = ssg(SI{x €Q:ful > sjl?),

which is equivalent to the semi-norm

* _ E'—1+2 d
leell” ., =sup|E]""" | |uldx
L27Q) peq E

iii) and V~ satisfies the following condition

(3.1.7) f IV’I%X}’"(M)dx < oo,
o D

We next suppose that the constant b > 0 in (3.1.6)) is optimal. Our main question is whether the best constant » > 0 in
lb is achieved for some function u € Hé (Q), or equivalently whether the corresponding Euler-Lagrange equation

G18) ~Au= 2 bV, in Q) {0)
o uz0 in Q,

has H'(Q) solutions. The answer is given in the following Theorem

Theorem 3.1.1. Suppose for some p > % the potential V € Li) AQN\A{O}) is such that holds. We also assume

that V* € L3*(Q) and V- satisfies the condition . Then, problem has no H'(Q) solutions.

Note that, in problem (3.1.8)), the assumptions on V is optimal. Particularly in the next example, we provide a

potential V which satisfies,

(3.1.9) f|v-|%xg'dx<oo, Va>1-n
Q



3.1. Nonexistence H'(Q) solutions 25

but

(3.1.10) f V72X ™"dx = oo,
Q

and in which case the problem (3.1.8)) has a solution ¢ € H'(Q).

Example 1 We consider the radially symmetric function u(x) = |x|’%2Xf (Ix]) for B > % which belong to H L(B1(0)). By

straightforward calculation we have

(n—2)?
4

(n-2) u

_ -t B2
~Au= - BB+ XY () - R

X)) =

+ Vu,

2
with V(x) = —B(B + l)lf_\lz' Note here that u € H'(B,(0)) is a nontrivial solution of problem (3.1.8) and the potential
V(x) satisfies the condition (3.1.9) and (3.1.10).

Before we go to prove Theorem let us prove the Harnack inequality for the positive solutions of problem
which is crucial to our analysis. But first we need the following proposition which Kurata proved in [Kul. This propo-
sition give to us Harnack inequality for the solutions of linear elliptic equations which include potentials in local Kato
class K,(Q2). Let us first define the local Kato class K,,(€2). We set

n(f;rQ) = supr Mdy

veRr I, X =y

then the function f belong to K, (€2) if and only if
lim7p(f;r; Q) = 0.
Theorem 3.1.2. Let u a nonnegative weak solution of
Lu=- Zn:(ai,juxi)xj + Zn: biuy, + V(x)u(x) =0 in Q,
ij=1 i=1

where Q is a bounded open subset of R" and the (a;, j)l’.f‘jzl satisfy the following conditions:
1. a;j=4aj; Y i,j = 1, N
2. AP < szzl a;j&EE < A7NEP VE €RY, for some A€ (0,1]

and 'V, (bi2 ., belong to the local Kato class K,(Q2). Consider also the constant n(n, A) > 0 be small enough such that
AV Q) + Y ibE Q) <, Vr<n,
i=1

for some ry(n, A,n) > 0. Then there exists constant C = C(n, A,n) such that :

max u < C min u,
B

r r

for By, C QandV r < 1.

Lemma 3.1.3. Let u be an H'(Q) solution of where the negative part of the potential V satisfies the assumption
m and the positive part of the potential V belong to the Lorentz space LT*(Q). Also assume that B 3 cC Q and
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consider for A > 1 the domain . )
D, ={— —1.
1 {2 7 < x| < 3 /l}

Then there exists a positive constant C such that
u(x) < Cu(y) Vx,yeD,,

where the positive constant C depends only on n, ||V|| and Q but does not depend on A > 1.

L3™(Q)
proof: We assume that By cC Q. Then we set r| = dist{dBg, 0Q} and take x € By \ B, for p < R. Also we take r such
that 4r < w Then we note that V € K, (B,(x)) Yx € Bg \ B, since V € L?(B,(x)) for some p > 5 and

\% C
f —72dx + f %d}c <
B, [x =y B0 VIl =yl

p-1

1 7 12 1
”V”Lr"(BR\B,,)(f de) + (f)zf —— 5 dx
B.(x) |x —y| » P B,(x) lx =yl

1 12
< c(n, QP (VI +(—)).
c(n, Qr= r (IVIlLrse\8,) (11p))

But, note that

2

Bx \ B,|' " z

IVllLrBe\B,) = (—pklf IVI”dx)
1B \ B, JBas,

1_2 1
< P np? pi|r = [
< CIOP NIV = COp IVl 5

Let i as in Theorem [3.1.2] we can choose ry > 0 such that

12 .\ 22
- p. Q)(”V”L%“’(ﬂ) * (E)z)ro T<ne

(3.1.11) < 1

C TP, DUVl g, + (B

Then u satisfies the assumptions of Theorem [3.1.2]and we have that
u(@) < Culy) Vz,y€ B (x),

By, C Bg \ B, and the constants C, ry depend on (n, 1, p).
We next set A = 1, then by (3.1.11) and Theorem [3.1.2]there exists 7 and ry such that
_n
S i P
n, ps i~ T\

and
u(z) < Cu(y) Vz,ye B.(x),

where By, C D and constants C, ry depends on (n, 1, V). Then, since D is compact there exists N(n) and x; € D,
such that D C Ufi 1 Br,(x;). And we obtain obviously

u(x) < CNu(y) VY x,ye D.
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Let take now the set D, for A > 1, then we have

n < n
Lty R T COn p Q)IVIl g + ()

(%vgm%mwn

and since %’ < ry, we note that for the same x;, ro, N as above that

N

Xi

Dic| By,
i=1

which imply,
u(x) < CNu(y) VY x,ye Dy,

and the proof of Lemma is complete. O

proof of Theorem For the proof of Theorem, we argue by contradiction. That is, we assume that u is a H'(Q)
positive solution of li (then by standard elliptic regularity we know that u € w>P QN {0} N Cpe(Q\ {0}) for some

loc
1
] u(x)ds i,
W= Jap,

where w, denotes the volume of the unit ball in R" and without loss of generality, we assume that the unit ball is

p > 1). Thus we can take the surface average of u,

(3.1.12) U(r) =

contained in . Standard calculations show that, U satisfies the O.D.E almost everywhere

-1 -22U
(3.1.13) U’ () + n—U’(r) + -2 (zr) =f(r)—gr) ae,
r 4 r
where
1 _
(3.1.14) f(r) = —-1f V u(x)dsS
nwy,r" OB,
and
1 +
(3.1.15) g(r) = ——+ Viu(x)ds .
nwy,r" 9B,
We next change variable by
(3.1.16) W(r) = r'= U,

thus by equation (3.1.13)), W satisfies the following O.D.E

(3.1.17) WY =r2(f(r) - g(r) ae.

Hence, by Lemma (see below), we have that there exists a constant C > 0 independent on r such that
(3.1.18) W(r) < CX (7).

To reach a contradiction we will find a lower bound for W that is incompatible with (3.1.18)). Working in this direction,
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first we set
W) = X0 Z(r),

where

1
-——<B<0.
5 <B
Then, by straightforward calculations we obtain that Z satisfies the following O.D.E a.e

L+2

rXU(NZ" () + XY (NZ/ (1) + X (NZ () + BB + 1) —— D) = i 1) -0 ae
We next multiply the above equation by X? and we obtain that
(3.1.19) rXP(NZ(r)Y = XP(rri (f(r) - g(r) - BB + 1))@20) ae.
Next, we set
(3.1.20) o) = rxfﬁ(r)i ((rr))
then by equation (3.1.19), we obtain that Q satisfies the following O.D.E
(3.1.21) rXP(0Q' (1) + QX(r) = F(r) - G(r) - BB+ DX(r) ae,
where
(3.1.22) F(r) = %
(3.1.23) G(r) = M

Z(r)
Thus, by Lemmas , (see below) we have that, given & > 0 there exist ry > 0 and —% < By < 0 such that
o) <X, YO<r<n, Bo<p<0

that is
Z0) _ X

<e&
Z(r) r

Integrating this from r to ry, we obtain,
Z(r) = CX{(r),

where C > 0 is independent on r, which contradicts by the fact that
n2_
CXS(r) < Z(r) = X,2(OW(r) < CX 7 P (),
if we choose ¢ and |B| small enough. The result follows. O

It remains to prove the three lemmas which we used in the proof of Theorem [3.1.1} At first we have:
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Lemma 3.1.4. Let U, W, f, g be as defined in (3.1.12), (3.1.16), (3.1.14), (3.1.13)), respectively, with V as in Theorem
and u € H'(Q). We also assume that B,(0) € Q and W satisfies in (0, 1] the equation . Then

(i) limrw W(}’) =0.
(ii) For r € (0, 1], the following representation formula holds,
"1,
(3.1.24) W(r) = f p f s2(f(s) — g(s))dsdt.
0 0
(iii) In addition, for r sufficiently small, say r < ry, the following estimate holds:
(n=2)
(3.1.25) W) <CX,™ (r) YO<r<n,

for some positive constant C independent on r.

proof:

(1) For the proof of the first statement of Lemma, we argue by contradiction. We assume that there exists positive
constants Cyp > 0 and r9 > O such that W(r) > Cy for 0 < r < rg. Now since u € H 1(B,O), we have also that

u €L (By,)- Then it follows from the definitions of U and W ( using Holder’s inequality ) that

2n

1 21 1 =1
— f W#ds, > o5 f uds
r 0B, B,

CUM = = Cr"T W(r)i: > .

%

Hence, multiply the last inequality by #"~! and then integrate it from O to ry to obtain that

o |
lu|=2dx > C —dr = oo.
By, o r

This is a clearly contradiction, since u € Lis (B,,) and C is independent from r. The first statement of Lemma follows.

(i1) To prove the second statement of Lemma, we note that the W-equation can be easily integrated to yield
"1 b
(3.1.26) W) =Ci + f ;(Cz + f s2(f(s) — g(s))ds)dt.
r t
First, we will show that the following limit exists
1 n
lin(}f s2(f(s) = g(s))ds = I < o0
= t

At first we note that I, # —oo, since otherwise (3.1.26) would contradict the positivity of W. Hence, it is enough to
show that

1
J = fs%f(s)ds
0

1
= Cn) f P f V- (X)u(x)dS dr < co.
0 9B,
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Since u € H'(Q), we have u € L%(Q). Thus by applying Holder’s inequality as follows, we have :

o[ wtasoi[ witas)F ([ 1as)F
OB, OB, OB,
n=2

s 20D n : E
- vy c(f VoIExids.) (f #ds.) "
OB, 0B,

T

IA

f V= (x)u(x)dS
4B,

Hence, taking into account the last inequality in J and use Holder’s inequality once more we obtain :

1 2=l n % n %
J < cf EX (f |V’|5X11’"a’Sx) (f |u|n%dsx) dr
0 OB, 0B,
4(n—1)
1 X n—2 %
< coof [ s g [ ) <o

4(n 1)

The reason which the last integral in the above inequality is finite follows by noting first > 1 and

X7 X0

T n—. S n r

(f - ds) = 3n=21 1= NS
o (==

Also, note that we have the following estimate

(3.1.27) f stf(s)ds < CX, 5 ().
0

We are ready now to compute the constants. In view of the statement (i) of Lemma and the fact that I is finite, we

assert that C, = —I,. Since otherwise, we would have that, there would exist 5 > O suchthatV 0 <zt <1y < 1

C2+fs2(f(s) g(s))ds>c2 ,ifCo+ 6L >0

or

y ifC2+12<0

1
Co+ f S0 - gonds < B

hence,

| L,
f O f SE(F(s) — g(s)ds)dr

t

' . o0 1 L
- f O f SE(F(s) — g(s))ds)dr + f O f SE(F(s) - g(s)ds)dr.

to t r t

Butif I, + C, > 0 then

\%

To 1 fo
[ e [ s -somana > 252 [T lar

L+C
= 2; 2 (Inty) — Inr) — oo

orif I, + C, < 0 then

fo |
f ;(CZ + f S%(f(s) — g(s))ds)dt I, -;Cz f 1

= 22 ) - inr) - o,

IA
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Thus, in the first case we have a contradiction by the statement (i) of Lemma, and in the second case we have a

contradiction by positivity of W. Hence equation (3.1.24) can be written as

1 1 1
W) = C) - f ! fo S(f(s) - g(s)ds)t.

To compute C, first we observe (using (3.1.27))) that

1 1
1 n (Bn-2) n=2
(3.1.28) f ;f szf(s)dsdtscf X dr=X" |1 <C
r 0
where C is independent on r. Now, note that
1ot
(3.1.29) f 7[ s2g(s)dsdt < oo,
r 0

since otherwise, we would have

W(r)

11 1 .,
cr- [ 3 [ st - etndsar
r 0
1t 1,
C, - f - f s? f(s)dsdt + f - f s?g(s)dsdt,
r t 0 r t 0

but the first integral in the above equation is finite by (3.1.28)), hence W(r) — oo, as r go to zero which is a contradiction
by the statement (i) of Lemma. Thus, by (3.1.28)), (3.1.29) and the statement(i) of Lemma, we choose C; = I; (since

otherwise W(r) would not go to zero as r approaches zero), thus with this choice of C; the representation formula

follows.

(iii) Finally, to prove the third statement(iii) of the Lemma, we use the representation formula and (3.1.27)),

W(r) = for % f;sg(f(s) —g(§))dsdt < f f st(s)dsdt
< fo sIX, T ds = CX (1),
and the result follows. ]
Let us now prove the O.D.E lemma.
Lemma 3.1.5. Let Q be a solution of
(3.1.30) rXPQ () + QXr) = F(r) = G(r) = BB + DXP2(r) ae, in0<r<1

where F, G are nonnegative functions, —1/2 < < 0 and

X PE(s
f 1—()als < 00,
0

N

then

lrilr(r)l o(r)=0
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Moreover if given any &€ > O there exist ro > 0 such that ¥ r < ry to have

" X P F(s)
f L ds <ex? (),
0 S

then for sufficiently small |B|, we have the following estimate

o(r) < 26X

28
proof: After multiplying equation (3.1.30) by X‘T and integrating it from r to ry with r < ry, we have

ro 2P 2 ro v—28 o v28
Q(r):f o (SS)Q (S)dS+Q(ro)+f X—l (S)G(S)ds - f X—l (S)F(S)ds

N N

" X2B+2(s)
(3.1.31) + ,B(ﬁ+1)f ‘Tds.

Note that the last integral in (3.1.31) is finite since 5 > —%. We next claim that

fl XI_Zﬁ(S)—QZ(S) ds < oo
0

b}

N

—28 2
A0 coast approaches zero. But, by equation (3.1.31) lim,,o Q(r) = co which

since otherwise H(r) = fr

N

implies that we can always find ¢ > 0 such that

1 X*Z.B F 1 X2,5+2
(3.1.32) Q(r)>f Mds—ﬁ(ﬁﬂ)f L9 Vr<n
0 s 0 s
We may then rewrite (3.1.31) as
ro -2 ro -2
(—rXP(DH ()2 = H(r) + O(ro) + f X9 SG(S)ds - f GG SF(S)ds
' ' ro X2ﬁ+2(s)
+ ﬁ(ﬂ+1)f ! —ds,

by using (3.1.32) and the fact that G > 0 we have
(~rX?PH'(n)? > H(r), Vr<n.

Hence for r < ry we have that :

>0

_28-1
Y , 2 R X7y
XP(OH () = H () © (H(r) T )

Integrating this from r to ry we obtain
—28-1
1 X7
-———+—>C,
Hr)y -26-1
. L. . . . . X
where C is areal constant. But, we have a contradiction, since H(r) grows to infinity as r tends to zero and lim,_, T =
—oo. Hence, lim,_,g H(r) < oo.

Now, we have three cases :
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. Q*(r) 500 as r—0
2. Q*(r) > c>0 as r—0
3. 0% >0 as r—0

Let us assume that the first case is true. Then there are ry, M > 0 such that ¥ 0 < r < ry to have Q*(r) > M. Hence,

1 y—28 2 1 y-28 2 o Y28 2
f X, ()0 (S)dszf X, 7 (90 (S)ds+f X, 7 (90 (s)ds
0

s 1o s 0 s

1 =28 2 ro Y28 1 Y28 2 ro y—28-1
Zf wdHMf Xl_(s)dszf Y7006 o A Dy e
1o s 0 s o s o —26-1

which contradicts by the fact that fol Mds < 00,

Respectively, if we assume that the second case is true, then we can choose ry > 0 such that ¥V r < ry to have that
0%*(r) > ¢ — &, where we have chosen & = 5, hence, by the same arguments as the first case we reach to contradiction.
Thus, lim,_oQ(r) = 0 and the first statement of Lemma follows. To prove the second statement, we note first that, since

Q(r) approaches zero as r go to zero, the following representation formula hold

SOOI f MMOSOI f XPOFS) BB+
0 0 N Zﬁ +1

. g L.

(3.1.33) o) = — f
0

Next, given & > 0 we choose ry > 0 such that

ds < eXP(r), Vr<r

f* X (5)F(s)
0

N

and By > —1/2 such that —2 éﬁ:i) <& Y By < B < 0. Thus, by representation formula (3.1.33)) and using the fact that

the first and the second integral are non-positive, we have the second statement of Lemma. O

Lemma 3.1.6. Given & > 0 there exists ro > 0 such that for all r < ry to have

" X P (s)F
f B (8) (s)ds < lez'B”(r),
0

N

where,

V satisfies the assumptions of Theorem and u is an H'(Q) solution of .

proof: We assume that B3, cC € and consider the domain D, = {ﬁ < x| < 3%1}, for A > 1. Then, by Lemma we

have that there exists constant C > 0 which depends only on n, V and Q such that
u(x) < Cu(y) Vx,yeD,,

thus by the last inequality we have
u(x) < Cu(y) Yx,ye K,={x|=r}
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Then we obtain that,

X2 (F(r) rXP(r) Jog, VudS

r - S, udS «
n=2
<Ccrm?2xPoy | vds

2y 2
“ds, < Crmxt (r)( f |v-|%x11-"dsx)"( f ds)"
OB, OB, 0

2

w2 ope 2l . :

Cr X (r)( f |V‘|7X1“"dSX)
0B,

where have also used Holder’s inequality. Applying Holders inequality once more we obtain,

A

—2

"X_zﬁ F (s K ,% 2Bn | 2n=1) ==
f &ds < C(f |V_|§X%_ndx) (f _1Xr1’)+ = ds)
0 s B,

|V |2X1 nd 2 2ﬁ+1()
((2ﬁ+1)n)" 2

and the result follows. m]

3.2 Nonexistence W'*(Q; ¢;_) solutions

In this section we suppose that # > 3 and Q is an open bounded domain which contains the origin. We next introduce
a new function space which is the appropriate setting in our analysis. We denote by W(;’Z(Q; ¢,%71) the Hilbert space

which is the completion of C’(€2) under the norm

1
2
(f ¢i1u2dx+f¢i1|Du|2dx) ,
Q Q

where

x| -4 1x |x]

(3.2.34) dl) =[x~ X 2(—)X 2(—) 2(—)
Xi(H) = (1 —Int)™", D = sup,q |xl, and Xx(2) := X;(X;_ (1)), for k > 2. Also we set ¢y = \XI;‘Z We recall the inequality
in [ET]

2»1 —

L -2
2 s 2n-1) o
(3.2.35) ( f ¢§_1|Du|2dx) > c( f 'T' ; ( X)X = dx) L Vue W@ ¢
Q Q

Now we consider a potential V € Lfo (Q) for p > 3 that has the following properties:

1) there exists » > 0 such that:

v[? oYL |x]

fg G [VvPdx > — Rr2i i 1(5)dx

(3.2.36) + b f Vgi_vidx, Mve Wyt dp ),
Q
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i) V* e L3°(Q)

iii) and V~ satisfies the following condition

k+1

(3.2.37) f VIE( [ X)) dx < o,
LV

We next suppose that the constant » > 0 in (3.2.36)) is optimal. Our main question is whether the best constant b > 0
in (3.2.36) is achieved for some function u € W(; 2(Q; ¢,%7 1), or equivalently whether the corresponding Euler-Lagrange

equation

—div(¢;_ Dv) = 3X; Xio1 - - - Xi ol + V@i v, in Q\ {0}

vz20 in Q,

(3.2.38)

has € W(Q, ¢7 ) solutions. The answer is given in the following theorem

Theorem 3.2.1. Suppose for some p > 4§ the potential V € L;, (Q\{0}) is such that holds. We also assume that
V* e L3°(Q) and V™ satisfies condition . Then problem has no Wh2(Q; ¢,%_1) nontrivial solutions.

We note here that the assumption on the potential V is optimal. Particularly in the next example, we provide a potential

V which satisfies,

k
(3.2.39) f |v—|%(]_[ X)X, dx < 00 Ya>1-n,
B1(0) i
but
k
(3.2.40) f |V’|%(l_[ X)X hdx = oo,
B1(0) i=1

and in which case the problem (3.2.38) has a solution ¢ € W'?(Q; ¢%_1),

1
X ? for B > 1 which belong to W'*(Q;¢? ). Then, we obtain

Example 2 We consider the function u(x) = Xf 3

+177k
by straightforward calculation that

. I _ 2,3 B p+1y3
div( |x|n72X11 T Xk—llD“) = (ﬂ(ﬁ + 1)Xf:] XkZXk—l e Xy + §Xf:1 XkZXk_l - X
B g1 y,3 l g 3 1
EXPX Xt Xy = X0 X X - ~X1)W

u
|x?”

2X,
That is the function u is a solution of problem (3.2.38) with potential V = -} xer;‘; ad

V satisfies the condition (3.2.39) and (3.2.40) condition (3.2.37).

1
= —bVu  ~ 7 Xir - X

. We note here that the potential

Before we prove the Theorem [3.2.1] let us give a Harnack type inequality for positive solutions of problem (3.2.38).

Lemma 3.2.2. Let u be a W'(Q; ¢1%—1) solution of (3.2.38) where the potential V satisfies the assumptions of Theorem
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@and assume that By cC Q. Then there exists a positive constant C such that

N W

u(x) <Culy) Vx,yeK,={z€eQ:|zl=rlandr <

where constant C depends only on n, ||V|| and Q.

n
L2%(Q)

proof: We set u = ¢,',v. Then
—Av=Vu, in Q\{0}
where ) 5 )
_ -2 /4 + 3" X5 X
% V+ (I’l ) / 2z—l 1 i
|x[?

Thus as Lemma [3.1.3]there exist a constant C > 0 independent on r such that ¥ x, y € {z : |z| = r} to have

v(x) < Cu(y) = gr_u(x) < Cp_u(y).

proof of Theorem As in Theorem [3.1.1, we may assume that u is a W'*(Q; ¢{_,) nontrivial positive solu-
tion of (3.2.38)) (then by standard elliptic regularity we know that u € leo’f QN\{0}) N Crpe(2\ {0}) for some p > 1). We

next take the surface average of u :
1
(3.241) Uir)= ——— u(x)ds .,
W= JaB,

where w, denotes the volume of the unit ball in R”. Without loss of generality, we may assume that the unit ball is

contained in Q. As in Theorem [3.1.1] we show by straightforward calculation that U satisfies the following O.D.E,

1 X227
(3.2.42) r U+ UG~ riizh ) + - =%

4 +r5 (8N - f(N) =0 ae,

where z; = X; - - - X; and f, g defined as (3.1.14) and (3.1.15) respectively. Next, we set

_1
(3.2.43) U=X_"W,
thus the equation (3.2.:42) becomes
1 1 1 1
“XPW Hr@G XWX W g X W =g (f - 8) aee

1
2

Finally, if we multiply the last equation by Xk_ , we can easily obtain that:
1
(3.2.44) ("WYY = rg X2 (fF(r) — g(r) ae.
Hence, by Lemma@ (see below), we have that there exists a constant C > 0 independent on r such that

(3.2.45) W(r) < CX,7 (1),

To reach a contradiction we will find a lower bound for W that is incompatible with (3.2.43). Working in this direction,
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we set W(r) = X, +1Z(r) for —% < B < 0. We can easily check that Z satisfies the following O.D.E

28 _—1rr Xlzfiazk
(3.2.46) Xz 2 =rX k+1zk ]X (f(r) gr)-pB+1)—/—— a.e.

ﬁ
Next we set Q = % and by simple calculations, we note that Q satisfies the following O.D.E

3
2X3ﬁ X 72 r ZX ZZ—Z r
XiE' 0+ @ = /0 e 80 pp 4 nx

(3.2.47) = F() -G -BB+DXE? ae.

Thus, by Lemmas [3.2.4] 3.2.3] (see below) we obtain that, given & > 0 there exist rp > 0 and —1/2 < By < 0 such that
o) <eX;t'(r), VO<r<r, Bo<p<0

that is

Z'(")<8Xk+1(")2k(”)
Z@r) ~ r ’

Integrating this from r to ry, we obtain,
Z(r) > CX;, (),

where C > 0 is independent on r, which contradicts by the fact that

CXf, () < Z(r) = X2, (nW(r) < CX, o 0!

k+1 k+1

if we choose ¢ and |3| small enough. The result follows. O

Lemma 3.2.3. Let U, W, f. g be as defined in (3.2.41), (3.2.43), (3.1.14), (B-1.13)) respectively. We also assume that
Bi(0)cQ, Visasin Theorem ue Wh(Q; ¢i_l) and W satisfies in (0, 1] the equation almost everywhere.
Then

(l) lim,lo W(l") =0
(ii) For all r € (0, 1], the following representation formula holds,

(3.2.48) W(r) = f f X220 (f(s) — g(s))dsdt.
(iii) In addition, for r sufficiently small, say r < ry, there exists a positive constant independent on r such that,

(3.2.49) W) < CX7 () 0<r<r.

proof: For the proof of statement (i) of Lemma, we argue by contradiction. We assume that W(r) > Cy > 0Vt € (0, rp).
Then it follows from the definitions of U and W ( using Holder’s inequality) that

2(n—1)

1 Il 251 X, 1 Iulz,f"IXk" =
n—l f Tds_x 2 C( n—l Tds )
r 4B, r 9B, |r| 2

2(n-1)

_ CXk’h (r)zkfl(r)(W(r)X;%(r))n S CZk(r),

rn
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for some positive constant C independent on r. Hence, multiply the last inequality by 7*~! and integrating it from 0 to

rp, we obtain that
2(n-1)

Jul 5 24 1X,"
B gesc (long) dr = oo
B |

0

. 2-1)
[l =2 2 X, "2
|x"l

This is clearly a contradiction, since in view of (3.2.35) we have that fB dx < oo. The first statement of
0

lemma follows.
(ii)

To prove the second statement we note that the W-equation can be easily integrated to yield
0] g
(3.2.50) W(r)=Cy + —(Cz + T 1(f(s) g(s))ds)dt.
First, we will show that the following limit exists
LI
lim f X0 (f(s) - g(s)ds = Iy < o0
11— t

At first we note that [, # —oo, since otherwise (3.2.50) would contradict the positivity of W. Hence, it is enough to
show that

1 1
J = f 75zk S (s)ds
= f ey f V(UG0S dr < co.

By applying Holder’s inequality as follows, we obtain :

2 n-2 n=2
n n 2n 2n 2n
f V- (u(dS, < c(f |V‘|ide) (f |u|mdsx) (f lde)
9B, 9B, 9B, OB,
(n=2)@2n-1) __ 20=D % 3’;2
= o X X gl X
) 2(n—1) .
. " | 21 X, Ea
x C( VoIEzlnd )( —dSX) .
9B, 9B, r"

Hence, taking into account the last inequality in J and use Holder’s inequality once more we obtain :

-2
n o

n ’% 2(n Ez 1 4(n v
seco [witztza) | [ s ([ aa)” <
Q L'(Byy) 0

Since u € W'2(Q; (Z)i_l) we have in view of (3.2.35)

n72
2(n=1) )
f x|~ 05 2 1 X" < oo,
L'(B,,)

Also, the last integral above is finite since,

311—7

r 4n=1) o2 o r
n—2 _ k+1
(3.2.51) (fo sX, zkds) - 2
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Thus I, < co. The representation formula (3.2.48) follows by the same arguments as in Lemma[3.1.4]
(iii) To prove now the third statement of Lemma, we use the representation formula (3.2.48), the fact that g > 0 and the

estimate (3:2.57)
_1
f s f SX_ 2! f(s)dsd

ZkX °n
C fo —ds 5= CX2, (1)

IA

W(r) = f Z f SX2 27 (f(s) - g(s))dsd

Let us now give the analogue O.D.E lemma as lemma (3.1.5).
Lemma 3.2.4. Let Q be a solution of
(3.2.52) rX:2 5 Q)+ QX ) = F() — G(r) - BB+ DX ae, in0<r<1

where F, G are nonnegative functions, —1/2 < 8 < 0 and

< 00,

fl X af(s) |
0

N

Then
lrllI{)l or)=0

Moreover if given any & > O there exist ro > 0 such that ¥ r < ry to have

r 28
[P <ot o,
0

s k+1

then for sufficiently small |8|, we have the following estimate

o) < 2eX.27 ().

proof: After multiplying equation (3.2.52) by ka*‘ and integrating it from r fo ry with r < ry, we have

" ? X, n X P F
Q(r)zf Md +Q(r°)+f = SkG(S)dS ) f ()

N

2,B+2

(3.2.53) + ,B(,8+1)f Ky %,

Note that the last integral in (3.2.53) is finite since 5 > —%. We next claim that

< 00

k)

fl kaka 0% (s) s
0

N

1 X %2.0%(s)

———ds — oo as r approaches zero. But, by equation (3.2.53) lim,_o Q(r) = oo which

since otherwise H(r) = fr

implies that we can always find ry > 0 such that

2[5+2

L x:
(3.2.54) Q(r)>fMd B(B+l)f Tt s Vr<n.
0
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We may then rewrite (3.2.53) as

" X aG(s) g f"’X ZkF(S)
- s

(=r X ()5 (DH (M)? = H(r) + Q(ro) + f
2,8+2

v peen [ et %4
by using (3.2.54) and the fact that G > 0 we have
(~r X,z (DH ()} 2 H), Vr <.

Hence for r < ry we have that :

X0 OH 0) 2 B0 & (3 L Xt l(r))
kel H(r) -28-1
Integrating this from r to ry we obtain
21
_ 1 4kl V7 k+1 (r)
Hr) -28-1 =6
26-1
where C is a real constant. But, we have a contradiction, since H(r) grows to infinity as r tends to zero and lim,_, Xk*z‘ﬁ (lr)

—o0. Hence, lim,_,o H(r) < co.
Now, we have three cases:

1. Q*(’)) 500 as r—0
2. O*(r) > ¢c>0 as r—0
3. 0’ =0 as r—0

Let us assume that the first case is true. Then there are ro and M > 0 such that V 0 < r < r to have Q*(r) > M. Hence,

f k+leQ2(S) f k+1ZkQ2(S) f’“ Xk+1ZkQ2(S)dS
N "o 0 N

28, 2 x5, #2.0? no X
5 fl Xk+1sz (S) M 0 Xk+1 _ fl Mds+ Mfo( Xk+l Yds =
ro " _Zﬁ_ 1

which contradicts by the fact that fol Mds < oo,

Respectively, if we assume that the second case is true, then we can choose ry > 0 such that V r < ry to have that
Qz(r) > ¢ — g, where we have chosen ¢ = %, hence, by the same arguments as the first case we reach to contradiction.
Thus, lim,_,oQ(r) = 0 and the first statement of Lemma follows. To prove the second statement, we note first that, since

Q(r) approaches zero as r go to zero, the following representation formula hold

2 r _2.3 v _zﬁ
(3.2.55) o) = _f M f Mds +f Xk+1ZkF(S)ds BB +1) 2[5+1( ).
0 0 § 0 s 2B+ 1 X1

Next, given € > 0 we choose ry > 0 such that

r X P F(s
f Md <8X2ﬁ+1(r) Vr<rp
0 S

and By > —1/2 such that — ﬁ (ﬂ”) <&, VY Bo £ B < 0. Thus, by representation formula (3.2.55) and using the fact that

the first and the second 1ntegra1 are non-positive, we have the second statement of Lemma. O
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Finally we have

Lemma 3.2.5. Given € > 0 there exist ro such that

r X, F(s)
f L ax,fffl(r), YO <r<r,
0 S

where i
2 ) -
X"z faB, V-uds

F(r)=
) faBude

>

V satisfies the assumptions of Theorem and u is a W'(Q) solution of (3.2.38)).

proof: By Lemma[3.2.2] we have
u(x) <Cu(y) v x, y € {x:|x| = r},

where the positive constant C depends only on n, V and Q. Then we obtain that,

X2 F(r) X2 ' [ Vouds,

k+1 +1%k  JoB, _n ) _

* = <Crmix® o f A
r fB uds 4B,

r

2 n=2
f

n ) 2(»1 1) n=2 o n " -
Crmx P () (r)( f v |2z}mdsx) ( f ds)
201 n2 . 2

o f AR
dB,

where have also used Holder’s inequality. Applying Holders inequality once more we obtain,

IA

w2 2B+
Cr X,

X 7 F(s) %0, 201) w2
f—"*'s ds < f|v *5dx (f S “deS)
0

2 2ﬁ+1(r)
= C(fw—ﬁzl‘"dx) e 1)
B k+1 ((2/3+1)n) 2

n-2

and the result follows.
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Chapter 4

Hardy and Hardy-Sobolev Inequalities in

Unbounded Domains

In this chapter, we will prove Hardy and Hardy-Sobolev inequalities in domains with infinite inner radius.
In particular, in subsectiond.1.T| we deal with exterior domains, i.e. complements of smooth compact domains. For our
purposes here, smooth means C? and we consider exterior domains not containing the origin, for instance R" \ B;(0).

Also, we suppose that Q satisfies the following geometric condition

Vd(x) - x

e

4.0.1) —Ad(x) +(n—1)

in the sense of distributions. Here we denote by d(x) = infyesq |x — Y.
Note that this condition is satisfied in case Q = R" \ B;(0).
First we state the Hardy-Sobolev inequality inequality under condition (4.0.1).

Theorem 4.0.6. Let n > 4 and Q be an exterior domain not containing the origin and satisfying condition ({#.0.1).
Then the following inequality is valid.
n-2

1 2 2n n
f Vuldx - ~ f u—dsz( f |u|ﬁdx) . VueCRQ),
Q 4 Jo d* Q

where the constant C > 0 depends only on Q and the dimension n.

We stress again that the domains referred the above theorem are of infinite inner radius.

The case n = 3 is different, as we can see from the following Theorem.

Theorem 4.0.7. Let n = 3 and Q be an exterior domain not containing the origin and satisfying condition with

strict inequality i.e.
Vd(x) - x

—Ad(x) +2
() P

z 0.

Then the following inequality is valid.

f |Vul*dx ! f uzdx>C( f x4(|x|)| |6dx)§ YueC(Q)
u - — e —)|U N u N
Q 4 Q d2 B Q D ¢

where X(f) = (1 +InH)~!, 0 < D < inf{|x| : x € dQ} and the constant C > 0 depends only on Q. Moreover, the power

4 on X can not be replaced by a smaller power.

43
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In subsection [4.1.2] we give three examples where the Hardy or Hardy-Sobolev inequality does not hold. Especially,
we give two examples in dimension n = 2 (for the sets Q = B{(0) and Q = R?\ {-1 < x < 1}) for which the Hardy

inequality
2
u 00
f \Vul*dx — cf de >0, YueCyQ),
Q Q

is not valid even for some constant ¢ < %.

Finally, we give an example for Q = R? \ B, (0) for which the Hardy-Sobolev inequality does not hold.
n=2

VuPdx - ~ —dx > ¢ f 6X"(|x|)dx)7,
.

B

where d = |x| — 1, X(©) = (1 + In(t))"' and a > 1.
In subsection[d.1.3] we still assume that € is an exterior domain and we prove the following theorems without assuming

a geometric condition on Q.

Theorem 4.0.8. Letn > 4, o > 0 and Q be an exterior domain not containing the origin. Then there exist positive

constants C(Q, n) and C'(Q, n, o) such that the following inequality is valid,

1 u2 2n %
ViPdx- 5 | Gaxec [ ——avz o [ W), veecr@.
flul x fdz fQ1+d2+"x fglul x ueCr(Q)

Theorem 4.0.9. Let n = 3, o > 0 and Q be an exterior domain not containing the origin. Then there exist positive

constants C(Q, n) and C'(Q, n, o) such that

1 u? 4, 1%l 3
VuPdx - " ———dx > (f 6 ) 2(Q),
fQI ul*dx 4fd2d +C f(;1+d2+”dx C | (p) uldx Yue CI(Q)

where X(f) = (1 + In9)™!, p = inf{|x| : x € OQ}. Moreover, the power 4 on X can not be replaced by a smaller power.

In subsectiond.1.4] we deal with the minimizing problem

A = inf o Vebdx =5 fy
1= ) s

Wt

where o > 0. First we prove that 4; € R and then we prove the existence of a ground state function ¢ € H IIOC(Q) which

solves the corresponding Euler-Lagrange problem in the sense of the weak solutions

1¢ ¢ .
MogE T e M
Finally, we prove the following estimate for the function ¢
d?(x) dz(x) n—1 n-22 1
< , wh n = + - -
1 o S d(x) < Cy " where a 5 7 1

Finally in section we assume that the set Q is above the graph of a C"*! function i.e.
={(*,x) €R" : x, > T(X)},

where I' : R"™! — R satisfies the conditions |[VI] < 2 and T € C"'(R""!) and we prove the following Hardy-Sobolev

inequality
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Theorem 4.0.10. Let n > 3 and Q be a domain above the graph of C! function which satisfies —Ad > 0 in the sense

of distributions. Then there exists a positive constant C(n, A) such that the following inequality is valid

n=2

1 [ G
f|vu|2dx——f“—dxzc<n,4)(f|u|ffzdx) , VueCT(Q).
Q 4 Jo d? Q

Observe that the constant in front of critical Sobolev term depends only on dimension n and A.

4.1 Hardy and Hardy-Sobolev Type Inequalities in Exterior Domains

4.1.1 Hardy and Hardy-Sobolev Type Inequalities in Exterior Domains Special Case

In this section we prove Hardy and Hardy Sobolev type inequalities in exterior domains under the condition (4.1.2).

We call Q an exterior domain if it is the complement of smooth compact domain. For our purposes here, smooth means
C? and we consider exterior domains not containing the origin (i.e. there exists p > 0 such that B,(0) cc Q°). The
main assumption which we use for Q is in terms of the distance function d(x) = inf{|x —y| : y € Q}. More specifically,

we assume that

Vd(x) - x

4.1.2) — Ad(x) + (n - 1)
|xI*

>0

in the sense of distributions i.e.

Vd(x) -

f (—Ad(x) +(n— 1)% udx >0, V0 <ueCPQ).
Q X

Note that in the case where Q = B(0) then inequality @ becomes equality. Also note that in the case where Q is

the exterior of ellipse then assumption (4.1.2) is not satisfied.

First, let us show that the inequality (4.1.2) becomes equality if and only if K is a ball centered at zero.

Lemma 4.1.1. Assume that 0 € K, where K has smooth enough boundary. Assume also that the following equality

holds for each x € 0K
Vd(x) - x

=0.
|x]?

-Ad(x) +(n—1)
Then K is a ball centered at zero.

proof: Let x € 9K. By a rotation of coordinates, we map x to X such that ¥ = (0, .., ¥,) and |X,,| = |x|. Then the unit
outer normal is (0, .., 1) and —Ad = (n — 1)H(x) = (n — 1)H(X), since the mean curvature (H(x)) is invariant under the

change of coordinate system. Then we have

YA X DH® + (- D o
B B

—Ad(®) +(n—1)

H(x) = —; = —i = H(x).
%l ~

Returning now to the initial coordinate system we obtain that

1 Vd-
__+_2x =0 Vd-x=|xl ©Vd = i
BY |x] |x]

Since the x € JK is arbitrary the last equality holds for each x € K. Thus K is a ball centered at zero. O



46 4. Hardy and Hardy-Sobolev Inequalities in Unbounded Domains

Theorem 4.1.2. Let n > 4 and Q be an exterior domain not containing the origin which satisfies the condition ({.1.2).
Then the following inequality is valid.

1 2 w5
(4.1.3) fquIzdx——fu—deC(flulﬁdx) . VueCo Q)
Q 4 Jo d? Q

where the constant C > 0 depends only on Q and dimension n.

proof: We set

u=|x~ 2

I\)\.—
=

then by straightforward calculations, we have

d|Vv[? 1 v (n—12% [ dpP?
IVul*dx f dx + - f dx + f dx
fg o ! 4 Jq |xI-td 4 o I

B n—lfVd-xlvlzdx_n—lfdx-szd)H_lfVd-szdx
2 Jog  lxrtt 2 Jo |xrtt 2 Jo lart

dx- Vv vd - x|v? div?
[y L [T, [,
o | o o
Vd -V Vd(x) - x\ 12
f%dx = f(—Ad(x)+(n—1)$)v—4dxzo,
o " Q |x] |x|"

where in the last inequality we have used the condition (4.1.2). Taking into account the last calculations we have

fIVuF ! f @ f dvif (- 1)(n ~3) f dvp
Q 4 0 dZ |X|" 1 |x|n+1

Thus by the above inequality it is enough to show that the following inequality is valid

Also, we note that

n=2

dIVy? -Dn-3 dpv)? dizllz %
(4.1.4) f VW 1= D=3) (7 db dxz( f #dx) . WeCP @)
Q Q

|~ 4 a ! Rk

Now let Q5 = {x € Q : d(x) < 6} for some ¢ > 0 sufficiently small and Qf = R" \ Qs. Then note that

4.1.5) <1VxeQf and p' <|x|<p+6Yxey

where p = sup{|x| : x € Q} and p’ = inf{|x| : x € Q}. To prove inequality (4.1.4)), we need to define cutoff functions
supported near to the boundary. Let a() € C*([0, o)) be a nondecreasing function such that a(r) = 1 for ¢ € [0, %),
a(t) =0fort>1and d’'(r) < Co For 6 small we define ¢s(x) := a(@) e C1(Q). Note that ¢5 = 1 on Q%, ¢s = 0on

Q¢ and |Ves| = |a /(d(x))| vd| o £ with Cy a universal constant.
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By @.1.3) and then Sobolev inequality we have

f div(ad - ¢a)V)|2d , 1=Dbe-3) d|(1 = ga)vI*

A 4 T
2 > c(&p)( f IV((1|)ZC—|’1<_;>25)V)I2 dx+(”_1)4(”_3) B I(1 _|$)V|2dx)
> o) f = ol _g";)v'ﬂdx)n;z
(4.1.6) > C(W(f(% x)',f’

where in the last inequality we have used again @) and the fact that Q5 c Q.
2

Now by Theorem 2.4 in [EMaTI]| and (4.1.5)) for sufficiently small 6 > 0 we have

f d|V(¢6V)|2dx N (n— 1)(”—3)f d|¢§V|2
Qs

|x|n—1 |x|n+1

(4.1.7) > C@p.0 f de) :
Qs

x|n2

We add (#1.6) and @.I.7) to obtain

di5 | psv|s o (] — 2 2
C(a,p,p’)( f %dx) +C(6,p)( f M x)
Q | c x|

x| 2

2 _ 2 _ _ 2
Sf d|V(¢’6\1/)| dx+f dIv((1 Qf(s)V)| dx+2(n D(n 3)f dMldx
Q A Q5 ||~ 4 Q X

2

dv? dlV 2 -1 -3 dIv?
4.18) < fg lxl%dx)+€(n)( f :xvﬂﬂ' 102 f |x::|+1
5\9%‘ Q

where in the last inequality we have use the fact that Vs # 0 only for any x € Qs \ Q 5

Thus in view of @.1.8), to complete the proof of theorem we need the following inequality

2 2 _ _ 2
4.1.9) f dex < C(f d|Vv| d+ (n-1)(n-23) dl| dx).
Q Q

o, 1! |x[! 4 o lxfrtt
2

The last inequality is simple to prove because by @.1.3) we have

dv? dv?
f _dx < (p+ 5)2(f lex).
0\, ||~ 0,\, ||+

The case n = 3 is different, as we can see from the following Theorem.

Theorem 4.1.3. Let n = 3 and Q be an exterior domain not containing the origin and satisfies the condition
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with strictly inequality i.e.

Vd(x) - x

(4.1.10) — Ad(x) +2
|x[?

Then the following inequality is valid.

4.1.11) f|vu|2dx—1f“—2dx>c<f (' I 6dx) YueCo(Q)
- 0 4 Jod" = ’ ¢

where X(f) = (1 +In9)™!, 0 < D < inf{|x| : x € Q) and the constant C > 0 depends only on Q. Moreover, the power

4 on X can not be replaced by a smaller power.
The condition 4.1.10]is equivalent with the fact that there exists £ > 0 and a ball of radius p > 0 with center at xy and

B,(x) C Q such that

Vd(x) -
f (—Ad(x) + Z#dx) udx > ef udx, ¥ 0 <ue Cy(By(x0)).
B, (x0) |x] B,(x0)

To prove Theorem we need the following Lemma.

Lemma 4.1.4. Let n > 3 and Q be an exterior domain not containing the origin. Then the following inequality is valid

-2

i f e ) .
4.1.12 2 d , Yue Cy(Q
(*+1.12) fmxw 2 ap Xp) ) e 6@

where X(t) = Tn(t)’

be replaced by a smaller power.

0 < D < infcyq |x| and C > 0 depends only on Q and n. Moreover, the power An 21) on X can not

To prove Lemma4.1.4] we need the following lemma which the proof is in [Mal].

Lemma 4.1.5. Let A(r), B(r) nonnegative functions. Such that 1/A(r), B(r) are integrable in (0, r) and (r, o), respec-
tively, for all positive r < co. Then, for q > 2 the Sobolev inequality

l—

4.1.13) [ fo ' B(t)Iu(t)—u(O)qut]a sc[ fo SA(t)Iu’(t)Izdt] ,

is valid for all u € C'[0, s] such that u(s) = 0 (or vanish near infinity, if s = ), if and only if

4.1.14) _ri(%ps)[ f B(r)dt] [ f (A(D))~ dt

be finite. The best constant in satisfies the following inequality

1

(4.1.15) KsCsK(Ll)zqi.
=

proof of Lemma[4.1.4; First we assume that « is a radially symmetric function. Then inequality {@.1.12)) is equivalent

to

n=2

(4.1.16) f WA%ZC([ |u|rn2 (L)”’iz” )f
P P




4.1. Hardy and Hardy-Sobolev Type Inequalities in Exterior Domains 49

2(n-1)

where p = inf,egq |x|. We note that the last inequality is valid by Lemma @4.1.5| for A(r) = r, B(r) = w and

q= nz_—"z Suppose first that p < 1. Following [VZ] we decompose u into spherical harmonics (since u € (B;(0))) to get

(e

U() = )" un(r)fon(r),

m=0

where f;, are orthogonal in L*>(S"~!) normalized by ﬁ fsn,l Jn(0) fu(0)dS = 6. In particular fy(o) = 1 and the first

term in the above decomposition is given by

1
up(r) = ﬁf u(x)ds ..
nwyr 0B

r

The f,,’s are eigenfunctions of the Laplace-Beltrami operator (V) with corresponding eigenvalues c,, = m(n — 2 + m),

m > 0. An easy calculation shows that,

4.1.17) f |Vul>dx = i |Vum|2dx+ic f ﬁdx
B B lxn? ~= " g

m=0

Now note that

Vu,, > = u? 1 V(u — up)? u — upl?
Z | m|2 dx + Z Cim dx > —( —| ( 20)| dx + —| ol dx)
B " ~ B |xl” AN/ |

m=1 By

n=2

2n n=2
C( f er:z“qxbmdx)" ,
B | x["

"
1

(4.1.18)

\%

Also, since uy is radially symmetric we have by @.1.16), that uj satisfies

Vuol? ol Ixl 2n '
(4.1.19) rdx> XCo) )"
B |l g X" D

thus by (4.1.18)) and (4.1.19) the proof is complete. O

proof of Theorem d.1.3; We set

1
u=|x""dzv

as in Theorem[d.1.2} then the inequality #.T.1T) becomes equivalent to

2 . 2 BxXAEy e (4
(4.1.20) fdwv' dx+f(—Ad(x)+2W)v_dx>C(fde)‘_
Q Q Q

|x? x> |x[®

To prove (#.1.20) we need the cutoff (¢5) which we used in Theorem .12} Also we recall that Q; = {x € Q : d(x) < &}
for some ¢ > 0 sufficiently small and Qf = R" \ €s. Then note that

d
X

(4.1.21) <1VxeQf and p' <|x|<p+6YVxeQ;

A

where p = supf|x| : x € Q} and p’ = inf{|x| : x € 9Q}. Then by Theorem 2.4 in [EMaTTll, Lemma.T.4] @#.1.10) and
(@.1.21) the following inequalities are valid

2 ) 2 BxAl 6 1
f de+f (—Ad(x)+2m)|¢§v| deC(d,p,p’)(f de)',
Qs Qs Q

|x? |x[* |xI* s |1/
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divV(l — ¢s)vI? Vd(x) - x\|(1 = ¢s)v?
Lc —|x|2 dx + fﬂa (— Ad(x) +2 e ) P dx
(1= sl Ixl |3
(4.122) > c6.) fﬂ ) ax)',

3

2

Now by (#.1.T0) there exists & > 0 and a ball radius p > 0 with center xo and B,,(xo) C Q such that
|x[?

vd(x) -
f (—Ad(x) + 2de) udx > Ef udx, ¥ 0 <ue Cy(By(xp)).
B, (x0) By(xo)

Consider now 17 € C5(B,(0)),0 <7 < T and n(x) = 1 in Bg Also consider a Br(0) 2> Q° such that B,(xp) C Bg(0).

Then we have

Vd(x) - Vd(x) -
f (—Ad(x)+2¥dx)v2dx > f (—Ad(x)+2¥dx)v2dx
Bg(0) |x] Bg(0) |x]
Vd(x) -
> f (—Ad(x)+2$dx)nv2dx
By(x0) |x]
> ef v dx
By(xo)
(4.1.23) >

gf Vdx
Brzz(xo)

Now in view of Theorem and (4.1.23), we only need to show the following inequality

dv? d|Vv? 2
(4.124) f x| f Y v e f —dxlax,
0,\, | a A By () |
We will prove inequality (.1.24) by contradiction. Specifically, we will prove that the following inequality is valid
(4.1.25) f Vdx < c’( f Vvl2dx + £ f vzdx),
Br(O)\Q% Br\Q% Bg(0)

where B, is a ball radius r such that Bgx(0) C B,(0) and Qs C B,. Where the stated estimate false, there would exist for

each integer k = 1, ... a function v; € H' satisfying

f v,%dx > kf IVvil>dx + af vidx.
Br(O)\Qg B,-(O)\Qg B% (x0)

‘We re-normalize v, such that

(4.1.26) f vidx = 1,
BA0\Qg
2
which implies
2 2 1
4.1.27) [Vv|"dx + & vidx < —.
B\, By () k

In particular the functions {1} are bounded in H'. Thus by Rellich-Kondrachov Theorem, there exists a subsequence
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{vi,} C {vi} and a function v € L? such that

Vi, =V, in L2

But then
(4.1.28) f vidx = 1.
B,(0)\Qy
On the other hand by (4.1.27) we have that Dv = 0 a.e and v = 0 a.e in B%v (x0) which implies that v = 0 a.e in
B.(0) \ Q4. Where we have clearly a contradiction by (@P |

4.1.2 Examples Where we have not Hardy or Hardy-Sobolev Inequality for n =2 and n = 3

In this subsection we will give some examples where Hardy and Hardy-Sobolev inequality is not valid in R? and R3

respectively.

Example 1 Consider the set K, = {—a < x < a} for some positive constant a. Then, there does not exist constant

¢ > 0, such that the following inequality to be valid
W2
f |Vul*dx — cf —dx 20, Yu € Cy(R*\ K)
R2\K, r2\k, 4
where d(x) = inf{lx—y|: y€ K,, x€R?}.

proof: We will show it by contradiction. We assume that R? \ K, has the Hardy property, that is, there exist a positive

constant ¢ such that

2
(4.1.29) f \Vul*dx > ¢ f M—2dx, Vu € CF(R*\ K,).
R2\K, r\K, d

Now set u(x) = v(%), where ¥ = £. Then d(x) = ad(%) (where d(%) = inf{lx —y| : ye K;, x e R?}) and V,u = Yov

a a

Then inequality (4.1.29) becomes equivalent to

2
(4.1.30) f IVvPd% > ¢ f Ydx, v e CPR>\ K)).
R2\K, rR2\k, d

By (4.1.30) we obtain that the constant ¢ is independent on a. Next in (4.1.29)), send a at zero to obtain that

2
f IVul’dx > ¢ f u—zdx, Yu e Cy(R?\ {0)).
R2\(0) r2\(0} 4

Which is clearly a contradiction, since the Hardy inequality in R? is not valid. O

Example 2 There does not exist constant 0 < ¢ < le such that

2
(4.1.31) \Vul?dx — cf ’c%dx >0, YueCy®R*\ By),
»

By

where d = |x| — 1.
proof: We will show it by contradiction. We assume that there exists a constant 0 < ¢ < % such that 1i is valid.
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1
We set u = =Dy where

r2

r—=1 ,1<r<?2
v(r) =
28r7¢ | 2<r

Observe that u € fD(l)’z(Bi). Then by straightforward calculations in}4.1.31] we have

d|Vy? 1 d|v|2 P |2
(4.1.32) f dx — - f (— -0) > 0.
B | x] 4 B |3C|3 B d| |
Now note that
d|VV|2 2—28 2—28—1
4.1.33 dx = 2ne -—),
( ) fBg |x] ( 2e 2e + 1)
dv|? 272 —28 -1
4.1.34 —dx =2r
( ) j;( |x]3 ( 2e 2e+1 )
and
2
(4.1.35) M
B d|x| £
But, )
1 1 1274
fim(= - 0)0— — 22— = —co,
Mm% 12
which is a contradiction by (.1.32)), (#.1.33), (@.1.34), #.1.33). |

Finally, we will show that on the exterior of a unit ball in R, Hardy-Sobolev inequality does not hold.

Example 3 There is not any constant ¢ > 0 such that the following inequality to be valid,

n=2

(4.1.36) |Vuldx — = f —dx > ¢ f 6X“(|x|)dx) "
B 1

whered = |x| — 1, X(©) = (1 + In(t))"" and a > 1.

proof: We will show it by contradiction. We assume that there exists ¢ > 0 such that (@I136) is valid. We set

== l) v, where

v(r):{ r=-1)% ,1<r<2

28F7¢ | 2<r

Observe that u € Dé’z(Bi). Then by straightforward calculations in|4.1.36, we have

dIv 2 d3 6 xa 1
(4.1.37) f V] dec(f V—“’d)dx)ﬂ
¢ |x? ¢ |x®

Now note that,

AV
(4.1.38) f Y e = ey
B,
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d|Vv?

(4.1.39) f l—zldx:cﬂ_zga,

BS |x]

dvOXa(|x]) c
4.1.40 dx > ,
(4.1.40) fBz K6 T a16s
and

3,6 ya 00 _ 1\3,—6eyua
4.1.41) f VI, f (UnB Vi SGW
B |x| 2 rt

Letting £ — 0, by @.1.37), (¢.1.38), (#.1.39), (4.1.40) and (@#.1.4T)) we have clearly a contradiction. o

4.1.3 Hardy Inequalities in Exterior Domain General Case

In this subsection we will prove Hardy-Sobolev type inequalities without the assumption of {.1.2). Before we prove

the Hardy-Soblolev inequality, we need a theorem for the following space:

Definition 4.1.6. Let n > 3 and Q be an exterior domain not containing the origin. We denote by D(l)’z(Q; |x]) the

completion of C(Q) function under the norm

|Vu|2 f u?
4.1.42 2 = ——dx + ——————dx,
( ) ||u“b(‘)-2(ﬂ;|x|) o |x|”‘2 X o (1+ |x|2+0')|x|n—2 X

where o is a non-negative constant.
Also, we denote by D"X(Q; |x|) the completion of C™(Q) with compact support at infinity under the norm (4.1.42)).

Theorem 4.1.7. Let Q be a exterior domain not containing the origin. Select an exterior domain V such that Q C V.

Then for each u € D"*(Q; |x|) there exists a function u € ’Dé’z(V; |x]) such that
(D)ul <ul <N+ DuaeinQ

(ii) u has support in V
and
2 2
<
(i) |MI’D(1)‘2(V;|x\) = C”””ﬂagz(ﬁ;lxl)

where the constant N depends on 0Q and constant C depends only on n, Q, N,o and V.

proof: Let ry = inf,c50 |x| and Ry = sup, 40 |x]. Fix x € 0Q, then there exists a r < %’ and a C! functiony : R*™! - R

such that (upon relabeling and reorienting the coordinates axes if necessary) we have
QN B(x,r) ={x € B(x,r) : x, > y(x")}.

Then we define y; = x; =: ®'(x) fori = 1,..,n— 1 and y, = x, — y(x’) = ®"(x). Similarly we set x; = y; =: Y(y) for
i=1,.,n—1land x, =y, +y(Q’) = Y'(y).

Then @ = Y~! and the mapping x — ®(x) = y “’straightens out Q" near to x. Observe also det® = detY = 1. Now let
x' € 0Q and fix r; small enough such that for the ball B(®(x%), ) = B(', r), we have that if x € W/ = Y(B(y, r)) then
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|x] > %. Now, for u € C*(Q) with compact support at infinity, we have

[Vul? u? 1 ’ 2
(4.1.43) dx + dx > ( [Vul“dx + u dx).
wi lxln2 wi (1 + x[2*)|x]n=2 (Ro)"2(1 + R#*)\ i i

Now set ' (y) = u(Y(y)), Bt = BG') N {y, = 0} and B~ = B()") N {y, < 0}. We define

_ u'(y) fory € B*
u(y) =
=3B, —yn) + 4 (Y, 5) fory e B".

Then u € C'(B). To check this let us write u* = ulz- and u~ = ulg-. We demonstrate first
u, =u’ on {y, = 0}.
Now since u~(y’,0) = u*(y’, 0) we have
uy, = u; on {y,=0} for, i=1,..,n—1.

Thus we have

f Vidy + f rmzdysc( Vil Pdy + Iu’Izdy).
B B Bt B*

Now since ¢1|Vu| < |Vyu| < ¢,|Vu| for some constants ¢y, ¢, which depend on y, we have

Vildx + | [iPdx < C( f Vuldx + f |u|2dx) =
wi wi Y(B*) Y(B*)
n-2 2 2
3
min{ﬂ, 1} (1 + (r—0)2+‘7)( I\ dx + f B dx)
4 4 wi |x"=2 wi [XIP=2(1 + [ x?+)

(4 1 44) < Rn—2 (1 + R2+(r) C(f |Vlzt|2 " +f de)
o o ’ vy P20 g 20+ )

where we have use the fact that |x| > 2’“ and (4.1.43)).

Since 0€) is compact, there exist ﬁmtely many points x' € 0Q, open sets W' and extensions u; of u to W' (i = 1, ..., N),
as above, such that 0Q C Uf\i | Wi. Take WO = Byg, \ Q¢ and let {{i}f\i o, be an associates partition of unity of (Bag, \ ) U

¥, Wi c UY, W'. Consider now the C' function a(f) = 1 if# < 1 and a(f) = 0if # > 2 and set {y+1 = | — a(%).
Write u := Z,Iv\f{)] i, where ug = u and uy,; = u. Then utilizing estimate (with u; in place u, u; in place u) we
obtain the bound

(4.1.45) |m|®]2(U dx) = C”””%”(QI’CD’

where U = QU Ufi . Wiand C positive constant which depends only on Q, n, N, o but not on u. Furthermore we can

arrange for the support of 7 to lie within V > U. O

Remark: In view of the above Theorem we can prove by similar way that

Viil? f f|m2 , f u?
dx + < C(n,Q +C'(n,Q, —_—d
tﬁuwzx Qa+uwww” -9 | €m0 | e
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Theorem 4.1.8. Letn = 3, 0 > 0 and Q be an exterior set not containing the origin. Then there exist constants C(Q)

and C'(Q, o) such that the following inequality is valid,

1 u? u? 4,1l
4.14 VuPdx -~ | L o aes (f 6 ) e
( 6) fgl ul*dx 4fgd2dx+CLl+d2wdx C , ( Yuldx Yue CX(Q)

where X(f) = (1 + In9)™!, p = inf{|x| : x € Q). Moreover, the power 4 on X can not be replaced by a smaller power.

proof: Let Ry = sup, .y |x| and n7 € C%(Q) such that n(x) = dz (x) Vx € Qg where &g is small enough, n(x) = w

Vx € B°(0,4Ry) and ¢; < 17 < ¢, otherwise, where ¢ and c; are positive constants. Set u = nv then we have

2
, u
f |VM| dx — — —dx + C fg; de

2192 2 v
= fganvI dx—fg(nA17+4d2)v dx+C LW:

2.2
_ 2 2 2 ’ nv
(4.1.47) = L UNNAY dx—fQ (nAn+4d2)v dx+C fQ T3 2o dx
€0 80 0
, nv
(4.1.48) + f 7 |\VvPdx - f (nAn + —)vzdx +C f ———dx
BOAR)\Q* B(0.AR)\Q¢ 4d? BOAR\Qe | +d*T7
2.,2
, nv
(4.1.49) + f 7 |\VvPPdx - f (A + )vzdx+C f ———dx
B<(0,4R)) B<(0,4R)) 4d2 B<(0,4Ry) 1+ d2+0—
(4150) = I +12+I3,

where I}, I, and I3 are the terms in (@.1.47), @.1.48) and (#.1.49) respectively.
Now for /; we have by Theorem 2.4 in [FMaT1]

1
I = f dVvj*dx - = f
Q 2 Ja

0 20

C(L d3v6dx)% ZC(];2 (| |)n3v6dx) ,

€0 0

2
Advidx + C’ f dex
ng 1 + d +0

(4.1.51)

\%

where in the last inequality we have used the fact that 0 < X(r) < 1.

For I, we first note

(4.1.52) f IVvPdx > ¢t f IVv[dx,
B(0,4R()\Q¢ B(0,4R()\ Q¢

2
(4.1.53) | f (nAn + - W2dxl < C f V2,
BOARO\Q® 4d BO4R)\Q*

’ nv C,Cl 2
(4.1.54) c x> ~ Vdx.
BOAR\Q 1 +d*7 1+ (4R)**7 Jpo.arp\0e
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2% we have by (4.1.52), (4.1.53), (4.1.54) and the Sobolev inequality

Thus if we choose C’ >

L > c( f IVv[>dx + f vzdx) > f 6dx
B(0,4R)\Q¢ B(0,4R))\Q¢ B(0,4R()\ Q¢
1
(4.1.55) > f )n v6dx)3.
B(0, 4R0)\Qr
For I5 first we note that
772 2
(4.1.56) - f (nAn + =—=n?dx > 0,
B<(0,4R0) 4d2

since d(x) > |x| — 2Ry in B°(0,4R,). Also we note that % i < 1 for each x € B°(0,4R).Thus we have by l)

X

\v/ 2 2
Y . PO
Be(0.ARy) Xl Be(0.4Rg) [XI(1 + [x]*+7)
2 2
(4.1.57) > CQ) YV e+ .0 M—% X,
B(02Ry) Xl B(04Ry) 1XI(1 + [x[*9)

where Vv is the function as in Theorem (see remark bellow). Thus since v € C!(B(0,2Ry)) we have by Lemma

414
2 1
[ o[ e
B(02Ry) |X| B(02Ry) |x]
*6 l
> ¢ f (m)—3d)
B(0.4R) |x]
1
(4.1.58) - C(f 4(|X|) - )3,
BC(0,4Ro) |x]

where in the last inequality we have used the fact that v = v VYx € B°(0,4Ry). Thus by (4.1.56), (4.1.57) and (4.1.58))

we have

1
(4.1.59) L= c( f x4 v6dx)3.
< (0,4R) 14

And the proof follows by (@.1.51)), (@.1.33), (#.1.59) and (#.1.50) i

Theorem 4.1.9. Letn > 4, o > 0 and Q be an exterior set not containing the origin. Then there exist constants C(Q, n)

and C'(Q, n, o) such that the following inequality is valid,

n=2

1 M2 2n n
2 ’ =£ 00
(4160) f |VM| dx— - f d2d x+C f(; md}( > C( f(; |M|”*-dx) . Yu € C‘C (Q)

(x-2R0)?

proof: Let Ry = sup, 40 |x| and 17 € C%(Q) such that n(x) = d %(x) Vx € Qg where g is small enough, n(x) = e
x| 2
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Vx € B°(0,4Ry) and ¢; < 17 < ¢, otherwise, where ¢ and ¢; are positive constants. Set # = nv then we have

1 u? u?
2 ’
L |Vul“dx 1 , —dzdx +C L T~ dzwdx

219,12 L n’v?
Lr] |Vv|“dx — L(T]Af] + m)v dx+C j(; de

219,12 n 2 v’
4.1.61 = Vv|“dx — An + —)Wwdx+C’ —d
( ) fgg@'ll v|"dx ngO(n n 4d2)v X sto 1 + d2+c X
219,12 ’72 2 U2V2
(4.1.62) + f n°|Vv[“dx —f (mAn + —)vdx + C’f ——dx
B(0.4R0)\Q¢ B(0.4R))\Q¢ 4d? BOARN: | + a7
2192 n* 2 v
(4.1.63) + f 77|V dx—f (mAn + —)vidx + C'f ———dx
Be(0.4R) Be(0.4R) 4d? Br(04Ry) | +d*
(4.1.64) = Li+h+1,
where I;, I and I3 are the terms in (4.1.61)), (4.1.62) and (4.1.63) respectively.
Now for I; we have by Theorem 2.4 in [FMaTl|]
1 v’
I = f dVvPdx - = f Advidx + C’ f = _dx
o, 2 o 0 1+d**o
n 2n n 2n 2n n
(4.1.65) > c(f dmvmdx) > C(f nm|v|mdx) .
Q, Q,
For I, we first note
(4.1.66) f n*IVvPdx > ¢} f |Vv[dx,
B(OAR\Q B(OAR)\Q*
7

(4.1.67) | (A7 + ——)v*dx| < Cy f Vidx,

B(OAR)\Q 4d BOAR\Q

2.2 C’'c?

(4.1.68) c f 1o x> L f Vidx.

BOARNQe 1 +d*+7 1+ (4R)* Jpo.4ry)\0

Thus if we choose C’ > 2%@2) we have by (4.1.66), (4.1.67), (4.1.68) and the Sobolev inequality
1

w \5
c( = dx)
BO,AR)\QF

n=2

20 2 E
C(f nn-2 |v|n—2dx) .
B(0,4Ry)\Q¢

\%

L > C( f IVv[>dx + f v2dx)
B(0,4R()\Q¢ B(0,4R()\Q¢

(4.1.69)

\%

For I5 first we note that

(n—1)(n-3) f (Ix] — 2Ro)v?

- ————dx,
B°(0.4Ry)

4 |x|n+1

2
Ui 2
(4.1.70) - f AR + ——)Widx >
Be(0.4Ry) 4d?
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since d(x) > |x| — 2Ry in B°(0,4Ry). Also we note that % < & <1 for each x € B°(0,4R,).Thus we have by (4.1.70)

I =

Vv -1 -3 2
L > C(f | v_|2dx+ (n ) ) v—dx)
Be(0.4R,) 1XI" 4 Be(0.4Ry) |XI"

2 _ _ =2
C,( f (V] dx +(n D(n—3) v dx),
B

<(02Ro) 1A"2 4 B (04Ry) 1XI"

(4.1.71)

\%

where v is the function as in Theorem Thus since v € C!(B°(0, 2Ry)) we have by Sobolev inequality

2 ~2 2n n=2
Vv n—1)(n-3 % V|2 n
f Y g 22 D223 _dx > C(f il dx)
Be(0.2Rg) |XI" 4 Be(0,4Ro) |1 XI" B02Ry) X

2n n-
V| n-2 n
C(f il - dx)
B<(0,4Ry) |x]

=t
C( - dx) s
B (04Ry) Xl

where in the last equality we have used the fact that v = v Yx € B¢(0,4R,). Thus by (#.1.70), @.1.71) and (#.1.72) we
have

v

(4.1.72)

n=2

(4.1.73) L > C(f |U|%|V|%dx) % .
B¢(0,4R0)

And the proof follows by (#.1.63), (@.1.69), (#.1.73) and {#.1.64) o

Finally, we will prove two theorems which are useful for the next subsection.

Lemma 4.1.10. Let n > 4 and Q be an exterior domain. Then the following inequality is valid

2n n=2

Vul? ) .
Vel dx>C( Ll 2dx) . VueCR Q)

a | =

Q |x| 72
_n2 (=22 |
where a, = 5= + 7 7> C > 0 depends only on Q and n.

proof: As in Lemma 1.4 we only need to show the inequality for radially symmetric functions. Thus, let u be a

(4.1.74)

symmetric function then inequality becomes equivalent to

2n

00 2 00 2n n=2
u |ud] 72 "
——dr>C dr| ,
72801 14 280
P p o2

where p = infyegq || and B, = w/% — 1. And the lemma follows by Lemma {4.1.5| with A(r) = —— and B(r) =

1

—5r - m
+

ron=2

Theorem 4.1.11. Let n > 4 and Q be an exterior domain not containing the origin. Then the following inequality is
valid

d ) u? dizuis = o
4.1.75) js; W(Wul + m)dx > C( js;r de) Yu € CO (Q),
_ n=2 (=2 _ 1
where a, = 5= + T — i
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proof: Let Q; = {x € Q : d(x) < 6} for some 6 > 0 sufficiently small and Qf = R" \ €. Then note that

(4.1.76) .4

| |§1Vxe§2§ and o <|x|<p+6VY xeQy,
P X

where p = sup{|x| : x € dQ} and p’ = inf{|x| : x € Q} To prove inequality (4.1.75]), we need to define cutoff functions
supported near to the boundary. Let a() € C*([0, o)) be a nondecreasing function such that a(r) = 1 for ¢ € [0, %),
a(t) =0fort > 1land @’ (¢) < Co For ¢ small we define ¢5(x) := a(%) e C1(Q). Note that ¢5 = 1 on Q;, ¢5 =0on

Qf and Vs = |a ’(d(x))| vdl < = with Cp a universal constant.

By @.1.76) we have

_ 2 _ 2 _ )
f dIV((1 = ¢s)v)| dx+f d|(1 = ga)vl dx > C((S,p)(f [V((1 = ¢s)v)l dx)
c Q o

|x|l+20,, < |x|2a,,+l(1 + d2+u') |x|2a,,
i 2n n=2
> C(&p)(f w ) ”
< x| =2
2
d|(1 = gl |\
5

where in the last inequality we have used again and the fact that Qf C Q.
2
Now by Theorem 2.4 in [FMaTT] and for sufficiently small § > 0 we have

f dIV((1—¢5)V)|2dx . f d(1 = ga)vi®
‘ Q

|x|1+2a,, . |x|1+2a,,(1 + d2+a')
7

o [ dFlgsE A\
C@.p.p )( fgﬁ PR dx) .

2

(4.1.78)

[\

Now we add (@.1.77) and (@.1.78)) to obtain
di=lps™ 7 |1 = o™\
cap( [ S )" rcap [ NS0 )
6.p.p) fgg {7200 X (6,p) o 0 X

diV(@sv)P dIV((1 = gs)v)P dvp
< Lé |x|1+2an dx+ . |x|l+2a,, dx +2 o |x|1+2a,,(1 +d2+o-)dx

2

d|v vl2 f div?
4.1.79 < C,( L C 4 )
( : «fg‘zd\gé |x|1+2a () f| |l+211,, o |2 (1 + g2+0) X

where in the last inequality we have used the fact that Vs # 0 only Vx € Qs \ Q 5
In view of (#.1.79), it suffices to prove

dv? dV)P dvf?
4.1.80 V4 sC( dx + J )
( : L&\Qé e fg g 2a fg 72 (1 + 2oy
2

However this follows because by #.1.76) we have

av? 2o av*
f 1+2a, dx S (1 * 6) ) (f 1+2a, 1 d2+a’ dx)
o, X o, e+ )
2 2
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Theorem 4.1.12. Let n=3 and Q be an exterior domain not containing the origin. Then the following inequality is
valid

d 2 x4
2 u P 0
(Va4 2 C( fﬂ — dx) . VueCR Q)
Q

where X(t) = (1 + In£)~'. Moreover, the power 4 on X can not be replaced by a smaller power.

proof: The proof of the theorem is the same as in Theorem The only difference is that, we use here Lemma
instead of Lemma[d.1.101 o

4.1.4 Existence of Minimizer in Suitable Spaces and Their Behavior

In this subsection, we assume the set €2 to be an exterior domain not containing the origin. By Theorems (for
n = 3) and[4.1.8](for n > 4) we note that there exists a constant A € R such that

\Vuldx - L [ ©dx
(4.1.81) ~c0<A= inf ko 2“f9" ,
ueCy(Q) [, T dx

where o > 0.
The main goal of this section is to prove the existence of a ground state function ¢ € H}OC(Q) which solves the

corresponding Euler-Lagrange of [4.1.81|in the weak sense i.e.

¢ ¢ .
(4182) - A¢ - m = ﬂd2+a' m Q.

Also, we would like to know how this function ¢ behaves. The space which we use to prove the existence of ¢ is

9(1)’2(9; |x], d) which is the closure of C’(€2) functions under the norm

d u?
2 _ 2
”“”«ggz(g;m, 0= fg T (IVuI T dx,

where a, = % + 4/ (";2)2 - }1 and o > 0. By Theorems 4.1.12Jand 4.1.11} we have for n = 3 and n > 4 respectively

the following inequalities

LX) ¢
2 P h oo
(4.1.83) . 2 > C( fg — dx) . Vue Co(Q),

where p = inf{|x| : x € Q} and X(¥) = (1 + In£)~".

2n n=2

n

di yns
2 o0
(4.1.84) [ C( L e dx) . VueCR Q.

(=22 _ 1
4 e

where a,, = % +

Theorem 4.1.13. Let n = 3 and let Q be a exterior domain not containing the origin. Then there exists a ground state
function ¢ € H. (Q) such that ¢ solves the problem (4.1.82) in the weak sense.

loc
proof: Let 7 € C*(Q) be a function such that n(x) = d %(x) near the boundary, say, d(x) < &, and n(x) = |x|’% away

from the boundary, say |x| > R > 2Ry = sup,,n and ¢; < n < ¢, otherwise, where ¢, ¢, are positive constants. Then
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IIVIIWé (@l 18 equivalent with the norm

2
2 _ 2 2 v
P = [ PR +

Also we have the following inequality
1

2
2 2 v 6. 64 Xl 3
(4.1.85) Ln (Vv|” + 1o +d2+(r)dx > C(Ln VX (_p )dx) ,

by @.1.83). Changing the variables by u = nv in (#.1.81)) we have the equivalent problem

2VvPdx — [, (nAn + L EnRdx
(4.1.86) co<d= it Jo fng(n n+ e
. O( ) Q 1+d*+o dx

For R and ¢ sufficiently large and small respectively we get

1n? 112
(nAn + — n—)vzdx + f (nAn + — 1
B Br\Qs

42 42
I + 16| + |55

1 2
Wdx + A (nAn + 1 %)v2dx
0

IA

First we note for x| > R > max{2R, 1} that

17’]2 _ 1 1 1 < 2R0 _ R() 7’]2
Ta\@x 1P T AP T 2 |xd?

4

Using the last inequality and the fact that % < 17 < 1for [x] > 2Ry, we have

1 2

22 Lo X2
I <C®y) [ Tlax < c( f X“(M)qﬂmﬁdx)*( f ° dx)‘
B |xld B p B |x|2

C C
R R

2

v
1 +d*e

(4.1.87)

IA

1
C(Ro,n) f (Vv + )dx,
R Jo
where in the last two inequalities we have used Holder inequality and inequality (#.1.85) respectively. Also since
nAn + 1T € L°(Q), we have
P2

2+0
(4.1.88) L] < C(O)RA +R)*™) s, (140 dw)dm

Finally,

1) Xi00) , f Xi(d) 2
L < -7 < - 7
|I3] < CX1(6) js‘z(; 5 vidx < C A 7 |§e, (d)VI“dx,

<0

where X,(d) = (1 —Ind)~" and ¢¢,(d) is the function as in Theorem|4.1.11
But by [FMoT1]-Proposition 5.1 we have

fg de(—d)l%vﬁdxsc f d(V(pey ) + ¢, ul*)dx,

" Qf
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which implies

(4.1.89) |13|<CL( f VP + —z)dx)
- SRR AN A 7

Finally we combine the estimates (4.1.87)), (#.1.88)) and (#.1.89) to deduce that for any & > 0 there exist M, such that

< 8f n |Vv|2dx+ M, fmdx

In the sequel we will establish the existence of a function ¢ € WS (Q; |x|, d) which realizes the infimum in (4.1.86)). To
this end let wy be a minimizing sequence normalized by fQ #dx = 1. Then using (4.1.90) we can easily obtain (by
(@1.86)) that the sequence wy is bounded i.e. sup, [will < N. Therefore there exist a subsequence still denoted by wy

(4.1.90) ‘ f (nAn + ——)vzdx
Q

such that it converges to Wé (Q; |x|, d)—weakly to ;. Clearly by embedding theorems for R > 0 and § > O large and
small enough respectively we have

(4.1.91) f (An + 2)widx - (nAn + £ )Wlx
Br\Qs 4d Br\

4 d?
Also, we have by (#.1.87)

1
(4.1.92) (nAn + ——)wkdx < CNE'

By (@#.1.89) we have

2.2
mwy 0
———dx < CN——,
fgﬁ T+ =X

where X;(6) = (1 —In6)~". Using now (4.1.91)), (4.1.92) and (4.1.93) we have

(4.1.93) ' f (nAn + 4d2)w,§dx

f(nAn + ZE)Wkdx — f(nAn + - 17 )w%dx

and the result follows by lower semicontinuity of the gradient term of numerator in #.1.86). i

Theorem 4.1.14. Let n > 4 and et Q be an exterior domain not containing the origin. Then there exists a function
pecH lloc(Q) such that ¢ solves the problem in the weak sense.

proof: Let 7 € C%(Q) be a function such that 7(x) = dz (x) near the boundary, say, d(x) < &g, and n7(x) = |x|™% away

n=2 (@22 1 = i
52+ "5 — 1. 5ay [xI > R > 2Ry = sup, s and ¢; < 77 < ¢ otherwise, where ¢y, ¢;

are positive constants. Then ||V||W(}(W(; (@ixl,a) 18 equivalent with the norm

from the boundary where a, =

2
V
vl = fg (VP + .

Also we have the following inequality

n=2

2 2n 2n 2n
(4.1.94) f 772(|Vv|2+—)dx>C< f nﬁ|v|mdx)2 ,
Q d2+a' Q
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by @.1.83). Changing the variables by u = nv in (#.1.81)) we have the equivalent problem

2 2
(4.1.95) o<z inf oy PIVVPdx — [, (nAn + L Eydx

212
Co(Q nv
e o Teamr 4%

For R and ¢ sufficiently large and small respectively we get

f (mAn + — —)vzdx + f (nAn + )vzdx + f (nAn + 5 )vzdx
Br\Qs 4d

1]+ |I2| + |13

Ap 4 22
| [ RSN

IA

First we note for |x| > R > max{2R,, 1} that

1n 11 1 2Ry Ry 1

An =— - < =— .
Nty 4(d2|x|2an |x|2+2u,l) A ad ~ 2 Kb

Using the last inequality and the fact that % < £ <1 for |x| > 2Ry, we have

n=2

n on n 1
| < C(R )f f nﬁh,dﬁdx) (f - dx)
1 O i B, 5, 0¥

=

1 V2
4.1.96 < CRo,m)— | (VWP + ———=)d
(4.1.96) <C( o,n)R%LU(l W+ s,

where in the last two inequalities we have used Holder inequality and inequality (#.1.83) respectively. Also since

nAn + }TZ—E € L>(Q), we have

(4.1.97) || < CO)R(1 +R)*) f v
B Bra, (1+d*7)
Finally,
5] < C%@ N Xléé)vzdx <C f s 2310 e, (d)v[dx,

0

where X;(d) = (1 — Ind)~! and ¢,,(d) is the function as in Theorem[4.1.11
But by [FEMoT1]-Proposition 5.1 we have

f Xl;d)lqﬁanvlzdxs c f d(V (o) + |, ul*)dx,
I Q

€0 20

which implies

0 V2
4.1.98 Ll < C—— 2(IVv] + ———)d )
(4.1.98) 115l < x,((s)(fQ”(' VP

Finally for combine the estimates (#.1.96), (#@.1.97)) and (@.1.98)) to deduce that for any & > 0 there exist M, such that

< 8f n |VV|2d)C+ M dezwdx

In the sequel we will establish the existence of a function | € Wé (Q; |x|, d) which realizes the infimum in (4.1.86)). To
this end let wy be a minimizing sequence normalized by fQ #dx = 1. Then using (4.1.99) we can easily obtain (by

(4.1.99) ‘ f (nAn+ )vzdx
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(@T1.95)) that the sequence wy is bounded i.e. sup; [wil| < N. Therefore there exist a subsequence still denoted by wy
such that it converges to W& (Q; |x|, d)—weakly to ;. Clearly by embedding theorems for R > 0 and § > 0 large and

small enough respectively we have

1y
4.1.100 An+ ~—)wid An +
( ) fBR\Qé(n n 4d2 x—>fR (nAn 4d2)%

Also, we have by @#.1.87)

17
(4.1.101) (nAn t 17 )wﬁdx
By (.1.89) we have

2 2 5
4.1.102 A 2d dx < CN——
(4.1.102) U(” ”+4d2)wk’“ f(l 2 <Ny G

where X;(6) = (1 — Iné)~". Using now (4.1.100)), (4.1.101) and (4.1.102)) we have

f(nAn + Zd—z)wkdx — f(nAn + — iz )Lpldx

and the result follows by lower semicontinuity of the gradient term of numerator in (@#1.93). m

Theorem 4.1.15. The asymptotic behavior of ¢ in Theorems and is like d near to the boundary and like

—2)2
|x|7% away from the boundary, where a, = % + % - 4—1‘.

proof: Assume first n > 4. It is well known that the eigenfunction ¢ ~ d 2 (see [DD] for a lower bound and see in
[FMoTT] for a upper bound). Thus we will focus away from the boundary such that ¢, is the minimizer of #.1.93] For
|x| > R where R is large enough, /| solves the problem

1 1 _ ¥

4.1.103 Ly = —di —_—— = A
( ) ¥ W(| | Vy) + 4(|x|2+2a,1 2| xPen Wi X2 (1 + d2+7)

First we show the lower bound. Let M > A;. Consider the function 1 + C;|x|™, then

-0
(L+|x|2a/,(T2*”))(] +C1|x| )
(n _ 2)2 1 1 MC] M
<o(- 7 9C " ' )
o 7 "3 OC e Y Ty e T (1T e

for C; > 0 and |x| large enough. On the other hand the first eigenfunction y; of L satisfies

(L * |x|2un(11VJIr d2+“))w1 = (|x|2un(1ﬂ+ d2+“))d/1 * (Wm#ﬂv))w‘ =0

Now since both function ¢ and 1 + C;|x|”7 are smooth away from the boundary, we can select constant & such that

(1 +Ci1xI™) — ¢y £ 0o0ndB. Let g(x) = e(1 + Cy|x|™7) — ¢ < 0 and ¢g* = max{g,0}. Thus we can take g* as test
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function to obtain (see remark below)

1 1 1 1 ggt
VeVghdx+ S (—5— TM—2__ <0=
L; |x|2an §ve ax 4(|x|2an+2 d2|x|2“ )gg |x|2a”(1+d2+n')

1 \v/ d 1 1 24 M |g+|2 <0
B |x|2a | 8 | X+ (I |2a 2 d2|x|2a,, )|g I"dx + |x|2a,,(1+d2+ff) -7

which imply by (4.1.86) that g™ = 0 and the lower bound follows.

For the upper bound we first note by (#.1.73)) that

n=2

on s
= n 2
LiguP+ (Aol 1 e o) " - [ dx
ﬁ;;e <P |Vu| + (4 |x|2"“*2 T )M dx . ( [} " Zr:mé, B, [x[en (T+d27)

J;?L IX|2a;x(1+d2+U) J;;L |x|2(1”(1+d2+cr)

n=2

(& '“‘;,,L,i ax) "
—2
(e (6B
By (1+af2+")2 Q4 Zlfmé’

W) < 4|x|2 ﬂ’ for |x| > Ry = sup,cy0 || we have two cases:

(4.1.104) >C

-1 > 00, as R—> o0 YueCy(By)

: 1
Since 3( 20

Case 1:
If 0 < o < 1 then as before we see that (L — W)(l - C1x7”) = 0 for C; > 0O big enough and (L —

Mm)‘/’l = 0. We next choose & > 0 big enough so that g(x) = ey — (1 = C1|x[™”) < 0 on dBj. Case

2:
If o > 1 we note that (L — W)(l — CilxI™") = 0 for C; > 0 big enough and (L — W)w, = 0. We next
choose £ > 0 big enough so that g(x) = ey; — (1 — Cy|x|"!) <0 on 0B,

Thus in both cases, since g* is a test function we have

+

1 . 11 N
fg EEZACAC G a2 o 188 4% = 88" dx <0,

f A
ge, X2 (1 + d**)

from which it follows | 5 L . )
+ +
‘fB‘R [x[2an |Vg | + (Z X2 paiPan )g dx <1

g+2

fB;; JxPan (T+d%)
This contradicts with (4.1.104) unless g* = 0 from which follows the upper bound for ¢.

For n = 3 the only difference is that in (#.1.104) we use (#.1.8) instead of (#.1.94). i

Remark: Let us now prove that the functions g* of the above theorem are tests functions.

First we consider the function a(¢) = 1 if ¢t < 1 and a(¢) = 0 if ¢ > 2. Then the function {,(x) = a(@), forr > R,itisa
H(l)(BZV \ Bg) function. Then we set g,, = min{g*, m} and ¢, c.n = {|x|"°gn. Note now that ¢, ., € HO1 (By, \ Bg). First
we claim that ¢, — |x|7g, as r — oo with respect the norm . To this end, it is enough to show that

x— 0, as r — oo.

f V(@ — Jr)(lxl‘égm))l2

|2
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Indeed
f V(1 - {r)(IJCI‘%’rn))I2
B, ||
— 2 -£ 2 _ 2 2 _ 214-2¢
oy sof [Tl o (0l [ Vel G
B |)C|2”” B |x|2a,,+2+a B |x|2an

It is not difficult to show that the second and third integral in the above inequality go to zero as r goes to infinity.
Finally for the first integral in @ 1.103)), we have

V(= &)gn)P - mCo) (P ety
5 B RN A '
2-lmem2 [0 L
(4.1.106) = mCn)———5—— >0, as r—o o
r

and the claim follows. By the same way we can prove that |x|™¢g,, — gn as& — O and g,, — g* as m — co. Thus we
reach to conclusion that g* € Q(l)’z(ﬂ; |x],d) and g* = 0 in Bg. In particular, we show that (by definition of Wg Q; |x], d))
there exist a sequence u,, € C;’(By) such that u,, — u with respect the norm (4.1.86), that is g* is a test function.

4.2 Hardy Sobolev Inequalities In Domains Above the Graphs of C!'! Func-

tions

In this section we will prove Hardy-Sobolev type inequalities in domains above the graphs of C!! functions. More
precisely, let I' : R"~! — R satisfying the conditions [VI| < 2 and I € C"!(R""!). We then call the set

={(x',x,) €eR": x, >T(x)},

a domain above the graph of a C"! function.
The half space R” = {(x,x,) € R" : x, > 0} is an example of a domain above the graph of C"! function. Especially,

we have the Hardy-Maz’ya-Sobolev inequality in half space (for n > 3)

n=2

(4.2.107) |Vu| dx — - _zdx > C(n) |u|n27"2dx) ", Vue CyRY).

R: X R?
We note here that the inequality is valid for n = 3 without using some logarithmic function as in exterior
domains. Thus, the proof of Hardy-Maz’ya-Sobolev inequality in domain above above the graphs of C!! functions is
different from the proof in exterior domains.
Set d(x) = infyesq |x —y| and 6(x) = x, —I'(x"). Then we can easily prove that k6(x) < d(x) < 6(x), where k = ﬁ Then

we have the following Theorem

Theorem 4.2.1. Let n > 3 and Q be the domain above the graph of C"' function which satisfies —Ad > 0. Then there

exists a positive constant C which depends only on n and u, such that

n=2

(4.2.108) f Vuldx - & f —dx > C(n, ) f Iuln’dx "L VuecCl Q).
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proof: Setu = d 2y then (4.2.108) becomes equivalent to

1 W ow N\
f AV — = f —Aduzdxzc( f dmmﬁdx) .
Q 2 Q Q

Since —Ad > 0 and kd6(x) < d(x) < 6(x), it is enough to prove

n=2

f SIVvPdx > C(k)( f 5 |v|%dx) "
Q o
But by inequality (4.2.107) if we set u = x2v we have that
n=2
n_ n n
(4.2.109) f ValVyvdy > C(n)( f iz |v|mdy) Vv e COR).
RY R"
Now set in (I@[) xp=yfori=1,..,n—-1land x, =y, +I(y’) then Vyv = Vyv+v, V. and vy, = v, , thus,
CIViv| < [Vl < e(u)|Vavl

and by (#.2.109) we have

n=2

f 5|Vvldx > C(y)( f ﬁM%dx)" ,
Q Q

which is the desired result.

Lemma 4.2.2. Leta, b, p and q be suchthat1 < p <n,p <q < ,ﬁ—npandbza—l+%n.

Then for any n > 0, there holds:
_1=2 — 00
AT Nl (R + (1= Dl Vil 2 16Vllzaes), Yu € C3'(RY)
where

(4.2.110) 0<a=a=pP
qp

proof: For p* = 22 and A as li we use Holder inequality to obtain:

n=p
b A - -
f x0vidx = f X Dy gab=ad |y, a(i=2) g
R R!

+ +
(1-2g

i
* w\ " _ P
(pr Ivlp) (f xh@ 1)I\/I"’a’x) =N

R:

1
IPeavllzaces) < VI

IA

-1 1-1
IIXZ V“Lp(m)-

®3)

Now use the fact that x'y!=* < A~ x + (1 — )y, for any n > 0, to reach to the desired result.
hfillo

Theorem 4.2.3. Let n > 3. Then the following inequality is valid
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—1
2 2n+1) ) RN
X,|Vul|“dx > Xou T dx| , VYue CyRY)
R! R!

where C is a positive constant which depends only on dimension n.

proof: By Lemma[d.2.2] if we choose p = 1 and 7 = 1 we have the following inequality

b -1
(4.2.111) [l vllzogny < /lllevHL%(R,D + (1 = Dllx; Vil @e)-

Now, for any a # 0 we have

4.2.112) f
N

n
+

1 1 1

xﬁ’llvldxz —f VgV, |vldx = ——f x,VdVvldx < —f x| Vvldx.
a Jgr a Jgr lal Jgn

By Sobolev inequality and @#.2.112)) we have

(4.2.113) SnlldxﬁvllLﬁ(Rn) Sf IVvaldXSaf xﬁ‘1|v|dx+f xZIVvIde2f xi|Vvldx,
* R" R" R

n
+

where S, = n? (U(1 + 2))7# see [Ma] p189. Thus by (4.2.111), (4.2.112) and (4.2.113) we have

(42.114) ( fR

Now, replace v by u* in the above inequality to obtain

1
4 24 1-A4
xﬁq|v|‘1)q <(—+ —)f x| Vvldx.
" Su lal " Jge

1 1

1
L2 2 1 ; ;
4.2.115) (f x’;"|u|fq)“' S(—+—)sf Xl Vuldx < (= +—)s(f x;|vu|2dx)2(f xZ|u|2S_2dx)2
R Sy a Jre Sy a R” R

n n
+ +

and the result follows, if we choose a =1, g = ”—:1 A= # and s = nzT”l O

Finally, we prove a Hardy-Sobolev type inequality which is of independent interest.

Theorem 4.2.4. Let n > 3 and Q be the domain above the graph of C*' function which satisfies —Ad > 0. Then there

exists a positive constant C which depends only on n and u, such that

1 2 n+ %
(42.116) f VuPdx — ~ f u—deC(u,n)( f du”n-l”dx) " Vue o).
Q 4 Jo d? Q

proof: The proof is same as Theorem[£.2.1] The only difference is that we use Theorem {.2.3] i



Chapter 5

Harnack Inequality and Heat Kernel

Estimates

Throughout this chapter we assume that n > 3 and Q is an exterior domain i.e complement of a smooth compact
domain. For our purposes here, smooth means C? and we consider exterior domains not containing the origin.

The main goal of this chapter is to prove a parabolic Harnack type inequality for the positive solutions of the problem

u .
(5.0.1) u; = Au + iz in Qx(0,T].
Also we prove sharp two side estimates for the heat kernel corresponding to problem (5.0.1).
The strategy which we follow is:
First, we consider the minimizing problem in section[4.1.4]
[VulPdx — 1 s
A= inf Jo ik :

UeC(Q) _ur
0 O T+

where o~ > 0. We have proven in that 2; € R. Also, in section [d.1.4] we have proven the existence of a ground state

function ¢ € H, () which solves

(5.0.2) —Au- L=y

4>~ o =

in the weak sense. In addition, we have shown that the function ¢ has the following properties
1. if d(x) < Cy then there exist C;, C, such that C;d'/?(x) < ¢(x) < C,d"/?(x), where Cj is small enough.

2. if Cy < d(x) < Ry then there exist C3, Cy4 such that C3 < ¢(x) < C4 where Ry is big enough.

3. if d(x) > Ry then there exist Cs5, Cg such that Cs|x|™% < ¢(x) < Cg|x|™, where a, = % + ("_42)2 - J—l.

Now if we set u = v¢ in problem (5.0.1) we have

div(¢*Vv) v
(5.0.3) v, = Lgv = 7 -4 T

in Q x (0, 7).

69
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Thus it is enough to prove a boundary parabolic Harnack inequality for the positive solutions of the problem (5.0.3).
We will prove it by Moser’s iteration technique (see [SC2|| for a simple case.)

Especially we prove

Theorem 5.0.5. Let v be a non-negative solution of . Then there exist constant A such that the following estimate
isvalid forall x, ye Qandall0 < s <t <T.

t—s t-— —y[?
v(s,y) <v(t, x)exp|A|]l + s+ s+|x ) ,
R? s t—s
where the constant R > 0 is small enough and depends only on 0 and the constant Cy.

By the above theorem we have the following corollary

Corollary 5.0.6. Let u be a non-negative solution of (5.0.1). Then there exist constant A such that the following

estimate is valid for all x, y e Qand all0 < s <t < T.

u(s,y)  u(t,x) t—s t—s |x—yP
o0) - P eXp(A(“ RS TS ))

where the constant R > 0 is small enough and depends only on 0Q and the constant Cy.

Finally we prove the sharp two side estimates for the heat kernel /4(t, x, y) corresponding to problem (5.0.3).

Theorem 5.0.7. Let a, = % + 4/ % - i. Then, there exist positive constants Ay, Ay, Cy, C, and ty such that for
all x, y € Qand all 0 < t < 1y the heat kernel hy(x,t,y) satisfies

|x|2an+1|y|2an+l 1 . Ix — y|2
1[ ] 2 exp( —-A )
max{d(x), r} max{d(y), r} t

1
Tl L e o
rzexp| — .

< hot, x,y) < Cz[max{d(x)’ rimax{d(y), r}

Now we note that the heat kernel A(z, x, y) corresponding to the problem (5.0.1)) satisfies
(5.04) h(t, x,y) = p(xX)p(V)hy(t, X, y).

Also by properties (1-4) of ¢, we have that there exist ¢; and ¢, such that

A0 _ i) < 0 2D
|x|an+l |x|””+1

(5.0.5) )

Thus by (5.0.4), and the previous theorem we have

Corollary 5.0.8. Let n > 3, then there exist positive constants Ci, C,, Ay, Ay and ty > 0 such that for all x, y € Q
and all 0 < t < ty the heat kernel h(x,t,y) satisfies

Cl[min(%, 1)min(d—f/y;), 1)];1‘3 eXp( —A |x _ty|2)

< h(t, x,y) < Cz[min(d(—\;), 1)min(d(_\/y;), 1)]%_; exp( A |x —IYIz )

In the rest of this chapter when we meet the function ¢, we always mean the function ¢ which we refer above.




5.1. Doubling Property, Poincare and Moser inequality 71

5.1 Doubling Property, Poincare and Moser inequality

5.1.1 Doubling Property

Consider now the space D(l)’z(Q; ¢) which is the completion of C’(€2) function under the norm,

2
- 2 u
||M||3(‘)v2(9;¢)—fg¢(|vu| +m)dx

In the sequel we will use the following local representation of the boundary of Q. There exist a finite number m of
coordinate systems (y',y,), ¥; = (Ji1, ..., Yin—1) and the same number m of functions a;(y;) defined on the closure cubs,
A=Ayl s il £ BY for j=1,.,n-1, i €{l,..,m} so that for each point x € 9Q there is at least i such that
x = (x, ai(x})). The function a; satisfies the Lipschitz condition on Zi with constant A > 0, that is

d

la;(v}) — ai(z) < Aly; - 2

s

foryl,z} € K;. Moreover there exists a positive constant b < 1 such that the set B; is defined for any i € {1, .., m} by the
relation B; = {(y},yin) : @(y})) < yin < ai(y)) + b}y and I'; = B; N 0Q = {(¥},yin) : ¥; € Aiyin = a;i(y))}. Finally let us

observe for any y € A; where someone can make the following inequality on the distance function
1+ )7 0in = D) < dG) < yin = i)
Let us now define the balls which we will use to prove some Poincare, weighted Poincare and Nash inequalities. More

precisely we have the following definition

Definition 5.1.1. Lety € (1,2)
For any x € Q and for any 0 < r < g—;ﬁ < b, we define the ball centered at x and having radius r as follows.
(i) If d(x) < yr then

B(x, r) = {05 yim) 1 Iy = Xl < 1d(x) = r < yin — ai(y) < 7+ d(0)},

where i € {1, ...,m} is uniquely defined by the point x € 0Q such that |x — x| = d(x), that is by the projection of the center
X onto 0Q).
(ii) If d(x) = yr then B(x,r) = B(x,r) the Euclidean ball centered at x.

We also define by
ven= [ s,
B(x,r)NQ

the volume of the "ball” centered at x and having radius r.
We first derive a sharp volume estimate.

Lemma 5.1.2. Let n > 3 and Q be an exterior domain not containing the origin. Then there exist positive constants d,

and dy such that for any x € Qand 0 < r < % < b, we have

max{d(x), r}
|x|2a”+1

max{d(x), r}

d |t

< V(x,r) <

s

where a, = % +

proof: To prove the Lemma we consider four cases.

Case 1. d(x) < g—; and d(x) > yr. In this case we have B(x, r) = B(x,r) C Q. Due to the fact that for any y € B(x, r), we



72 5. Harnack Inequality and Heat Kernel Estimates

have
VT"ld(x) <d@) —r<dy)<d)+r< VT”d(x),

we obtain

A

1 1
f #(dy < Cs f do)dy < CowyI2d(x)r = Cown Lo~ max{d(x), rjr"
B(x,r) B(x,r) Y Y

s Czwnu(l) + Q)a,ﬁ-] maX{d(x), }"} "
Y

2,), |X|2a"+1

A

)

where P = sup{|x| : x € 9Q}. On the other hand we also have

-1
Clwny— max{d(x), r}r" < #*(y)dy =
Y B(x,r)

v - 1pZa”Jrl max{d(x), r}

Ciwy |x|2a,,+1

< V(x,r),

where p = inf{|x| : x € 0Q}.

Case 2.
Considering now d(x) < % and d(x) < yr. Then we have (for some i € {1,...,m} where we omit the subscript i for
convenience)
) d(x)+a(y’ )+r
ven= [ goay < @ (3 - aly dyudy
B(x,r)NQ max{d(x)+a(y’)-r.a(y’)}
(x)+a(y’)+r
< Cy(d(x)+r) dy,dy’ < Cy(d(x) + rYw,_1¥"
max{d(x)+a(y’)-r,a(y’")}
C d(x),
< 2Cywyy max{d(x), r}" < 2Caw,_y (P + SOyt MAXIACD. 1),
2,), | lea”+l
On the other hand we have
| (x)+a(y’)+r
Vix,r) =z Ci(1+A) O — a(y"))dy,dy’
max{d(x)+a(y’)-ra(y’)}
. (x)+a(y’')+r
> Ci(1+A) On — a(y"))dyndy’
max{yr+a(y’)—ra(y’)}
> Ci(1+A)  'wuoi(y = DF'( @) + 2= y)r)
> Ci(1+A) 'wuoi(y — D2 = y)r" max{d(x), r}
d B
> Gl + A e (y - D@ - ypter! BT,
|x|2a”+1
Case 3.
S <d(x) < 4R,
2y(4R)%n+! d(x),
Vix,r) = ¢2(y)dy < Cudy < Caw, 1" < Y(@R) AWy max{d(x, r ,
C | x|2a,,+l
B(x,r) B(x,r) 0

Also, we have
max{d(x),r} ,

V(x,r) = C3w,r" = YR 3W), o

Case 4.
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d(x) > 4R
e 1
ven= [ goy < 6 [ wimdsc—— [ a
B(x,r) B(x,r) (lxl - r) " JB(x,r)
1 4R  max{d(x), r}
< C n22a,, M <C n22a,, n’
oW |x|2"" oW 4R - P |x|2“~+1 r

where P = sup{|x| : x € 9Q}. Also, on the other hand we have

1 _,, max{d(x), r}
V(x,r) > Cs———— dy > Csw, 2720 2 1
(x r) > (|X| + r)Za,, \[l;(x,r) Y W |x|2u"+1

From the previous Lemma someone can easily deduce the doubling property which reads as follows:

Corollary 5.1.3. Doubling property. Q be an exterior domain not containing the origin. Then there exist positive
constants C and 3 such that for any x e R" \ Q and 0 < r < 8 we have

V(x,2r) < CV(x,r).

5.1.2 Poincare Types Inequalities

We begin this section with the proof some Poincaré type inequalities. We begin with the following weighted Poincare

inequality, the proof of which is [Mol]. We give it for convenience to the reader.

Lemma 5.1.4. Letn > 2, U C R” be a smooth bounded convex domain. Also let ® be non-negative continuous function
with support in U with the following property.
If for any x, y € U we have

O(x) < D(y)

then
(5.1.6) D(x) < Drx+ (1 —1)y) V1e[0,1].
ThenV f € C*(U) we have
min f ) - EPO )y < cB f IV FO)RD2 )y,
R Jy U

where B = Sup, ¢, X — ¥l and
maxyey ¢(X)
c=————
2 [, @(x)dx Joso

Where the minimum above is assumed for
. Jp, fOx)dx
fU D(x)dx

proof: We note that

5.1.7) fU fU G0 = FORDEDO)dxdy = 2 fU D(x)dx fU ) = K2D()dy,
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where

Jy FO0®@0dx
- fU ddx

Let x,y € U such that 0 < ®(x) < ®(y). Then we have

2

{x—y|
1) = FOPOD0) = fo VfCrk rw) - wdr) BOOB0),

where w = Iic;—;\
0 - fPOmow < [ VO T LY a0
B 0 VO(x + rw)
[x=yl {x=yl 1
2
< j(; O(x + rw)|Vf(x + rw)| drjo‘ —(D(x ) dr®(x)®(y)
[x—yl
< f ’ O(x + rw)|Vf(x + rw)*drlx — y| max ®
0
fx=yl
< Bmax® f ’ O(x + rw)|Vf(x + rw)*dr,
0

where in the above inequalities we have used the Holder inequality and (5.1.6).

Now letting z = y — x and integrating with respect x we have

Izl
f If(x) = f(x + 2)PO(x)P(x + z)dx < Bmax ® f f O(x + r— |V flx+ rn)lzdrdx

Now set V(y) = ®(y)|Vf () if y € U, V(y) = 0 otherwise. Then we have

Izl
Bmax@ff V(x+r£)drdx
v Jo Izl
Izl z
= Bmax(Df f V(x + r—)drdx
Rt JO Izl
Iz
= BmaXCI)f f V(y)drdy
»Jo

= |z|BmaxCDf V(y)dy < B? max(Df V(y)dy
R)! Rn

IA

f I£(x) = f(x + 2)PO(x)D(x + z)dx
U

Integrating now over z we have

f f |f(x) = f()’)|2¢’(x)(1)(y)dxdy < B? max(I)f
vJu

D>0

dx fU IV F )LDy

Finally, combining the above inequality and (5.1.7) we have the desired result. O

Also we have,

Theorem 5.1.5. Local Poincaré inequality. Let n > 2 and Q be an exterior domain not containing the origin. Then

there exist positive constants C = C(n,7y, Q) and 3 such that for any xy € Q, we have

inf f lfO) — EP¢*(y)dy < C f IVfP*)dy, Vf € C¥(B(xo, r) N Q)
B(xp,r)NQ B(xp,r)NQ

£eR g

proof: We consider only the case d(x) < yr for some y € (1,2). Since in other cases we have c¢(x) < ¢(y) < Co(x) for

any x € B(xp, r) N Q and we can reach easily to the desired result.
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In our case we have that ¢*(x) < C,(x, — a(x’)) = C,®(x), thus it is enough to prove that

inf f fO) - PGy < C, f IV FO)PIO)dy.
EER JB(xo,)NQ B(x0,/)NQ

‘We note that

f f () = FOIPDIBG)dxdy
B(x0,r)NQ J B(x0,r)NQ

=2 f (x)dx f If ) = kPP D(y)dy,
B(x0,r)NQ B(xp,r)NQ

_ j;*(xo,r)ﬂﬂ FOD(x)dx
) O(x)dx

where

A[B(xo,r)ﬂﬂ

First we assume x, <y, then we have for any 7 € [0, 1]

(5.1.8) X < 130 + (1 = )y,

Then we have

{x—y| 2
() = FORDD() = ( fo Vf(x+ rw) - wdr) D)D(y),

where w = 2=

=

=1 Vf(x +rw)-w
- 2O(x)D Vo = Ard(x)D
If(x) = fFOIFP(0)D(y) < (x+rw «/T) dro(x)®(y)

Ix— | [x=yl

< fo ’ O(x + rw)|Vf(x + rw)|*dr fo ’ md@(x)cp(y)
{x—y|

< f ' O(x + rw)|Vf(x + rw)Pdrx,|x — y|

0
<

fx—yl
(y+ l)r2 f O(x + rw)|Vf(x + rw)Izdr,
0

where in the above inequalities we have used the Holder inequality and the notations (5.1.8).

Now letting z = y — x and integrating with respect x we have

|zl
f [f(x)— f(x+ z)|2<D(x)CD(x +2)dx < (y+ l)r f O(x + r—)|Vf(x + r—)I drdx.
B(x0,)NQ B(x0,r)NQ 4

Now set V(y) = @3W)|VFO)P if y € B(xp, r) N Q, V() = 0 otherwise. Then we have
|zl z
f If(x) — f(x + 2)PO(xX)D(x + 2)dx < (y + 1)r? f f V(x + r=)drdx
B(x0,INQ (0,NQ |zl

2| Izl
= (y+ )P f f Vix + rél)drdx = (y+ )P f f V(y)drdy = 2|ty + 1)r f V(y)dy.
nJ0o Rr JO n

Integrating now over z we get

f f If(x) = FOIFRX)P)dxdy < (v + D" w, f IV f )P D()dy.
B(x0,7)NQ J B(xg,r)NQ B(xp,r)NQ
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Thus,
Wu(y + D!

— kPOO)dy <
L oo o

- f V)P O)dy.
f‘«’i(xo,r)nﬂ B(x0,N)NQ

Now let us estimate the following integral

(x)+r
f d(x)dx = f fd Xpdx,dx’
B(x0,r)NQ B(x(,,r) ~ max{d(x)-r,0}
d(x)+r }"2
> wn_lf XpdXy = Wy —.
d(x) 2

‘We deduce the desired result.

wu(y + l)r’“r3
f ) = KPD(ydy < 2T f IV FG)POG)dy.
B(x0,)NQ 5 I B(x0,1)NQ

Finally we have

Theorem 5.1.6. Local weighted Poincare inequality. Let n > 2 and Q be an exterior domain not containing the
origin. Then there exist positive constants C = C(n, 7y, Q) and B such that for any xo € Q with d(xg) < yr < B for some
v € (1,2), we have for any f € C7(€2)

inff lf@) — EPO()dy < Cf V)P D(y)dy,
B(xp,r)NQ

£eR B(x0,1)NQ

where
Ix" = xp

)

| P —ax) - d(x0)|)+ .
r

o = (1- )+2(xn ~ ey

proof: We note that
f f G0 = FOIRDEDO)dxdy
B(x0,r)NQ J B(xg,r)NQ

-2 f D(x)dx f ) - KROO)dy,
B(x,r)NQ B(x0,r)NQ

where
F(x)D(x)dx

O(x)dx

k= ﬁ;%(xo,r)ﬁﬂ

j‘;%(xo,r)ﬂg

First we assume x, <y, then we have for any 7 € [0, 1]

Xp < txp + (1 =)y,

and J 4 / / /
(1 ~ ltx'(1 — t)y —xOI)Jr 5 (1 ~ |x —x0|)+
r r
Or J / J / /
(1 @ =ny —xol)+ 5 (1 by —xol)+
r r
and

(1 e+ - tr)yn - d(x0)|)+ S (1 _x —rfl(xo)l)+
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or
- — + _ +
(5.1.9) (1 e + (1 = Dyn d(XO)|) > (1 _lym d(x0)|) ’
r r
Then we get

2

[x—yl
) - FOPOD0) = fo VfCrk rw) - wdr) BOOB0),
where w = 1=

=l Vf(x+rw) w
—_— 2 —_—_—
If (%) = fFIFO)D(y) < VO(x +r o) dro(x)®(y)

[x=yl [x=y
< fo ' O(x + rw)|Vf(x + rw)*dr fo mdr(l)(x)d)(y)

1=yl =yl
< f D(x + rw)|Vf(x + rw)Pdrx,|x -yl < (y + Dr? f D(x + rw)|Vf(x + rw)ldr,
0 0
where in the above inequalities we have used the Holder inequality and the notations (5.1.9).

Now letting z = y — x and integrating with respect x we have

I2]
f [f(x)— f(x+ z)|2®(x)®(x +2)dx < (y+ l)r f O(x + r—)|Vf(x + r—)| drdx.
B(x0,)NQ B(x0,r)NQ |zl

Now set V(y) = ®y)|IVF()? if y € B(xo, ") N Q, V() = 0 otherwise. We then get

|zl
f I£(x) — f(x + 2)POx)D(x + z)dx < (y + D)r? f f Vix+ ri)drdx
B(x0,)NQ (x0,7)NQ |zl

|zl Izl
=(y+Dr? f f V(x + r=)drdx = (y + Dr? f f V(y)drdy = |z(y + 1)r? f V(y)dy.
»Jo || r Jo R

Integrating now over z we have

f f () — FOIPDDDGIxdy < (y + P w, f IV FOIPDG)dy.
B(x0,r)NQ J B(xq,r)NQ B(xg,r)NQ

Thus we have
wu(y + D!

PoO)d
L o ke < P

< f IV £ D()dy.
\£3(x HNQ B(xp,1)NQL

Now let us estimate the following integral

X = xp|\** A x, — d(x0)|\*’
f O(x)dx = f (1 - —0) yn(l - M) dx,dx’
B(x0,)NQ B(x).r) r max{d(x)—r,0} r

First we estimate from below the following integral.

[x" — x, I
f (1 0 f f 721 - —) dS yds = Wy C(ny".
B(x.r) r 9B(x0,5)

Let us estimate from below the following integral

(xX)+r . — dn)\* d(x0)+5 X —d(x +2 1
fd xn(l _ b = dxo)l 0)|) dx, > f x,,(l _ P = dxo)l 0)|) dx, > —1".
max{d(x)—r,0} r d(xo) r 32
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Thus we have the desired result.

wy(y + 1)r”+3
c(n)rm+!

f FO) = kPD()dy < f IV £ ROy
B(xg,r)NQ B(xp,r)NQ

5.1.3 Moser Inequality

In this section we will give the Moser inequality, which proof is similar as in [FMoT3]]. We will give it for convenience

to the reader.

Theorem 5.1.7. Let n > 3 and Q be an exterior domain not containing the origin. Then there exist positive constants
C and B such that for any v 2 n+ 1, xo € Q and f € C5’(B(xo, r) N Q) we have

fB Rt
B(xp,1)N,

2
v

< CMer(x, r)_% f

B(xg,r)NQ

IVFOPF @ f

B(xp,r)NQ

FOPF )

proof: We consider only the case where d(xo) < yr, d(xo) < B and f € C5(B(xo, r) NQ), since C1¢(x) < ¢(y) < Crp(x)

otherwise. First we claim that it is enough to prove

—1
2(n+1

(5.1.10) ( f FONE ddy) ™ < ¢ f VO )dy.
B(x,r)NQ B(xp,r)NQ

Indeed, if (3.1.10) is valid then

f ORI R@R0dy < C f ORI Dd()dy
B(xp,r)NQ B(xp,r)NQ
- f ORI 47 () )y
B(xp,r)NQ
5.1.11) < f o doy) f Fordody)
B(xg,r)NQ B(xp,r)NQ

aswell as forany v > n + 1

2(v—n-1)
v(n+1)
f Oy f o)D)
B(xp,r)NQ B(xp,r)NQ
21+ 2 l+i 2142 S iren
([ rorEanan) ([ et i)
B(xg,r)NQ B(xp,r)NQ

2
1 2 2y _n+l

Gh-Dr GV
([ doan)™ TR do) T
B(xp,r)NQ B(x0,r)NQ

2(v-n-1)
2
- f PO da| f o))
B(x,r)NQ B(x,r)NQ

Vi)
_20-n-1)

- _2 2
<C, "V V()P f L FOP+ =0 d(y)dy,
B(x0,r)NQ
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thus by (5.1.11) and the above inequality we have

f FOPI D d(y)dy
B(x0,)NRN\Q

n-l
n+l

o o) ([ iforeo)
B(xg,r)NRM\Q

2
v
)

< Cn, p)r*v(x, r)—%( f

B(xg,r)NR\Q

where by (5.1.10) we have the desired result.
In the sequel we will give the proof of (5.1.10). We will follow closely the argument of [EMaT1l]. If V c R” is any

bounded domain u € C(V), then it is well known that

Sullll, 2 oy, < IVl v,

where S, = nnt (1 + %)]‘% (see p 189 in [Ma])). Let us fix from now on that V = B(xy, ) N Q and let us apply the
above inequality to u = df for any f € C7(V) and any a > 0. Thus we get

Sulll s, < [ 19A + a9l ldy.
\%

Let us remark at this point that boundary terms on €2 are zero due to the presence of the weight d, a > 0. To estimate
the last term of the right hand side we will make use of an integration by parts, noting that Vd - Vd = 1 a.e.. That is we

have

f ad*|f\dy = a f d'Vd - Vd|fldy = f Vd* - Vd|fldy = — f d* - 5d|f\dy + f d*vd - V|fldy.
\%4 14 14 \%4 14

Under our smoothness assumption on Q we have that [dAd| < cod in Qg, for ¢ small, say 0 < § < dp, and for same

positive constant independent of ¢ (6, cp depending only Q). Now if d(x)+r < ¢ thatisif r < }%, we have that V c Qg

a f & fldy < co6 f & fldy + f &IV fldy,
1% 14 1%

consequently for any r € (0,5) with 5 =

and it follows that

1 a . . . .
w21 and any 6 < o the following inequality is true

a a
(5.1.12) Sulldull ey < (4 725

)||daVM||L1(V)-

To proceed we will use the following interpolation inequality (cf. Lemma 4.1 in [FMaT1]]):

g-n(g-1)

n(g—1) _
eull 27 ) + Tlld" "ullp s

ldull vy <

foreachl<q§#andb=a—l+";ln,a>0.
q

By (5.1.12) and the above inequality, we get for any a, b, g as above the following inequality
(5.1.13) I’ ullzaqvy < Cilld* Vv,

where C; = "(S"—_ql)(a%mé +1)+ @%. Let us apply inequality (5.1.13) to |u|* instead of u then

a*C()ﬁo

( f d”4|u|squ)" <Cis f Al Vuldx
\%4 v
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1 1
SCls( f d2“1|u|25*2dx)“( f d2“2|vu|2dx)“,
\%4 \%

1 gl
where a; + a + 2 = a. Now we choose a, = § and 2a, =bq©a1=%".Thusa=%+%andb=b"7+[’7n©b=

_ 1,971

%QTH. Also we choose s = ﬁ. Thus the last inequality becomes
2

1
-3 2 — 2
( f dbﬂur%zx)" scl—q( f d|vu|2dx) .
%4 2 \%4

Now we choose g = % (then sq = % and bg = 1) to give us the desired result. O

5.2 Moser’s Iteration

We keep the notation of the previous sections. Set
0=(-rs)xBx,HNNQ
05 = (s — 672, 5) X B(x, 6r) N Q.

Definition 5.2.1. We will say that v € C'((s — 1%, 1) : Hé(%(x, r) N Q)) is a weak solution of if for each
[ONS C(')((s 2,0 Cy(B(x, r) N Q)), for each s — rr <t <t <swe have

& vD
f f v, ® + VyWVWO + 44 —2dde =0,
n JB@Enna L+d*+e

where dm = ¢*dx and o > 0.

We denote here by H(},(EB(x, r) N Q) the space which consists of all functions u : B(x,r) N Q — R such that, Vu

exists in the weak sense and

2
u 2
llull?, = f \Vul*¢*dx + f ———¢’dx < .
Hy(B(x,r)NQ) Br.HNQ BN 1 + d2+o

By Definition[5.2.T]of weak solution, we note that the choice of the test function plays an important role in our analysis.

Thus for this reason we have the following theorem which proof is in [FMoT3|.

Theorem 5.2.2. Letn > 2 and U C R" be a smooth bounded domain. Then we have
Hy(U,d(y)dy) = H'(U,d(y)dy).

Here H' (U, d(y)dy) denotes the set

=) iy = [ d + 2y < .
! U

proof: By Theorem 7.2 in [K] it is well known that the set C‘X’(ﬁ) is dense in H'(U, d(y)dy). Thus for any v €

H'(U, d(y)dy) there exists v,, € C*(U) such that for % > 0 we have ||v - vm||H]1 < 5 for all m > m(e). Let us choose
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W 1= V) and let us define for k > 2

0 d(x) <
_ In(kd
¢k_{1+% L <dx) <1
1 d(x) > 1

Setting wy = w(l — ¢y), we then have

lw = wll?, f d(V(w = wol” + (w — w)*)dy
! U

< 2 f d(Vwl*(1 = ¢))dy +2 f d(IV(1 - g)Pw*)dy
U U
vdp?
< 2 f d(VwP)dy + 2 f d(—' '2 w?)dy
d(x)<y L<d(nst d?k? In” k
2 2 &
< %”WHH; + E{”W”H} < T Yk > ko,

where we have choose k( large enough. Thus
v = willgr < v = Wil + w = will < e,

and the desired result follows. |

5.2.1 Properties of Subsolutions

Similarly with Definition , we call a functionv € C'((s—r2,r) : H;S(EB(x, r) N Q)) subsolution of lb if for each

0<de Cé((s -2 C5(B(x, r) N Q)) and for each s — r? <t] <t < s we have

1) (I)
(5.2.14) f f VD + VVO + 4y ———dmdr <0,
o JBenQ 1 +d**+

where dm = ¢dx.

Theorem 5.2.3. Let QO C R” be an exterior domain not containing the origin, v >n+ 1,y € (1,2) and p > 0. Then
there exist constant B(Q) and C(v, A1, co) such that for all x € Q with yr < cy and for any positive subsolution v of
(5-0-3) in O we have the estimate

C
sup v|P <

[vIPdxdt,
05 (6" = 6)*2r2V(x, 1) Jo,

foreach0 <6 <¢ <1.

proof: First we consider the case where d(x) < yr.
Setu = v + ¢, then u is bounded away from zero (at the end of the argument we send ¢ to origin). Thus by (5.2.14) we
have for any ® € C5B(x, R) N Q

() ()
f WD+ VuV® + 4 ———dm < &ld)] —
BOLRNQ 1 +d*e BrRnQ 1 +d*7
(5.2.15) < A4 uddm.

B(x,R)NQ
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Let G : [0 : c0) — [0,0) be a piecewise C! function such that G(s) = as for large s and G(0) = 0. Assume that
G has a non-negative, non-decreasing derivative G’(s). Hence, G is non-decreasing and G(s) < sG’(s). Finally define
H(s) > 0 by H(s) = VG'(s), HO) = 0. Observe that H(s) < sH’(s) as well. Due to Theoremthere exists a
sequence of functions u,, in C* (B(x,r) N Q) having compact support in Q such that u; — uin H'(B(x, r) N Q, d(y)dy).
Since ¢ ~ d%, we have that u; — u in qu)(%(x, r) N Q). Hence for any ¥ ¢ € C7B(x,R) N Q and k > 1 the function

® = y>G(uy) is an admissible test function, that is, the following holds true:

2 2 szG(uk) 2
v G(uy) + VvV~ G(up)) + 4 —erdm < |l uy”G(ug)dm.
B, RINQ L +d+o BOLRINQ
Passing to the limit k — oo we have
2
G
f VPG() + VW) + 1 0 g < |y WP Gu)dm =
B, RINQ 1 +d*o B, RNQ

f uGuwydm  + f VPG W) Vul* + 24 G(u)VuVydm
B(x,RNQ B(x,RINQ

(5.2.16) < 24 wy*G(u)dm.
B(x,R)NQ

Now
2f YGu)VuVydm > —2f YuG' (u)|Vu||Vyldm,
B(r,RNQ B(r,RNQ

where we have used the fact that G(u) < uG’(u). Finally by Holder inequality we have

1
2 f WG w)VuVpdm > —= f 2G' (w)|\Vul*dm — C f W2u*G ()| V> dm.
B, RINQ 2 Jsrne

B(x,RNQ

Combining now the last inequality and (5.2.16), we have

1
f up’Gwydm + = f PG’ (w)|\Vul*dm
B, RINQ 2 Jaxpn

(5.2.17) < C f WPutG )|V Pdm + 2|4 W Y*G (u)dm.
B(x,R)NQ B(x,R)NQ

Then, we note that

IVWH@)* = (YWH®) +yH (u)Vu)* = [V H*u) + 2 H )P Vul* + 20 Hw)H' (u)VVu
< 2AVYPH (u) + 207 H )P Vul* < 2(VylPu H(u) + 21G )l Vul®)
< 2IVY PG W) + YAIG W)V ul).

Hence, we have

f IV H®u))*dm < 2 f IV P u® |G ()l dm + 2 f W2 \G (w)||Vul*dm.
B(x,R)NQ B(x,R)NQ

B(x,R)NQ
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Using the above inequality in (5.2.17), we have

1
f up?Gwydm + = f V(W H (u))|*dm
Br,RINQ 4 Jsrng

< C f VPG (W) |V Pdm + 2|4 W *G (u)dm.
B(x,R)NQ B(x,R)NQ

We note here that, the above integrals are all finite since G’(s) = s and H(s) = as for s large enough. Now multiplying

the last inequality by a function y(¢), we have

d 1
— VP uydm + - f VW H(u))*dm
dt Juipna 4 Jserne
< C f YRG! (W) VyPdm + 2)44| Y G (wydm.
B(x,R)NQ B(x,R)NQ
+ f WG )y dm
B(x,R)NQ
< C f VPG (w)|\VylPdm + 2|4, WG (u)dm
B(x,RNQ B(x,RNQ

(5.2.18)

+

f PG W)Plialdm,
BRNQ

where F is a function such that 2F’(s)F(s) = G(s). GivenR > r > 0, we choose x(7) € Hé(R) suchthat0 < y < 1, x(¢) =
1in (s =72, 00), x() = 0in (—c0, s —R?) and |y’| < (R Ty Also we choose a function ¢ = &(ly — X' Dé(ly, —a(y’) = d(x))),
where & € C*(R) and satisfies 0 < & < 1, &(s) = 1 if s < r and &(s) = 0 if s > R. Then clearly we have |Vy| < -—
Now, we integrate (5.2.18) from zero to ¢ for some ¢ € (s — R?, s) and letting ¢ go to s, we have
22
sup f Y F“(u)ydm
B(r,RINQ

1 S
! f f V(W Hw)Pdmd
te(s—r2,s) 2 JB(x,RNQ

C+20
(52.19) . £ |§° f f W2IG (wldmt.
(R-r) R Jspne

Now fix some large N. Set

+

52 SN
Hy(s) = ”
N:ls s>N
s 5 » sP1 s<N
Gu(s) = f ()Pt = { e
0 4p-D\ N2 NP 2(s—N)+ NPl s>N

p
4(p-1)

N7 NN(”’) +NP s =N+ 2 s> N

F2 HI Zd_ < S<N
2(s) f (0Pt = o] 1){

For any p > 2. These G};s, Hys, F) s have the required properties and we note that Flz\, > 4(pp 1)Hz Thus (5.2.19)

becomes

1 S
P up f VHA(uydm  +  ~ f f V(& Hy ()P dmdt
4([7_1) te(s—r2,s) J B(x,R)NQ 4 2 JB(x,R)NQ

C(/ll,co)f f 2
5.2.20 < Gy (w)|dmd
( . (R-1)? BLRNQ Gyl
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Also we have

f \Hy )P dm
B(x,r)NQ

f WHNGOP dm
BRNQ
2

([ veH@Rdn) sy [ wypan) -
B(x,R)NQ te(s—r2,s) J B(x,R)

S ca , 1+—
f f \Hy () dmdt < E (1 o) f f 2|GN(u)|dmdt) ,
=2 JBERNQ (R - Jor Jsrne

where in the last inequality we have used Theorem with the constant E = C MrZV_T2 and . We note here
that we can use Theorem [5.1.7]for the function Hy(u). Since by Theorem[5.2.2]there exists a sequence of functions uy
in C*(B(x, r) N Q) having compact support in Q such that ux — Y>Hy(u) in H'(B(x, r) N Q, d(y)dy) and since ¢ ~ d?
we have that u; — u in Hé(%(x, r) N Q). Thus we have,

f O D
B(x,r)NQ
2
_2 v
< ChPV(x P f Vue) el f wPdm)
B(xg,r)NQ B(x,r)NQ

and passing to the limit k — oo

f WP Hy 0P dm
B(x,r)NQ
2

< CurVinr) f |V<w2HN<u))|2dm( f |w2HN(u)|2dm)”.
B(x,r)NQ B(x,r)NQ

IA

Hence combining all the above we have,

+2

y C(Ay, +
(5.2.21) f f |Hy ) dmdt < E (1, o) f f 2|GN(u)|dmdt) )
s=r2 IB(rInQ (R -? Jire Jsnna
Moreover as N — oo Hy(s) — s and G (s) — —s” 2. Thus the inequality li becomes
Cc(,, 1+3
(5.2.22) f f WD dmdr < E “ C°2) P f f u”dmdt ,
B(x,r)NQ (R =) R2 JB(x,)NQ

provided the integral on the left hand to be bounded. We note that by iteration for py = p, p; = p(1 + %), wees Di
i
p(l + %) that

S
f f u’idmdt < oo, Yi>0and r’ < 7.
s=r"2 JB(x,r'")

Thus by same argument as before we have for r < R

2

C(Ay, W
(5.2.23) f f uP dmdi < E “ c‘;) i f f ”‘dmdt :
B(x,r) (R -7) R2 JB(x,R)

Now set 6 = &'rand r; = & = (&' = 6) X' 277. Then r; — iy = (6" = 6)277" and pi1 = pi(1 + 2). Thus inequality

(5.2.23)) becomes
Ccd , 22(1+1)
ff uP* dmdr < E( (21 fO) 5 ff u”’dmdt S
0, (0" =96) 0,

Tit1
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1
o C 1 22(l+1) -
(f fQ. o dma)"™ < B (rzl((;()) o7 f f “”'d’"d’[

C(/l],CO) )ﬂ]i+1’ill 2(i+l) 2i p, 1
e U 27 p mlp p”" u"’"dmdt
2(5 2 1
(8" - 6) - -

1

SEZI/SI(%) /00/4 /!Ojt;/le j[)@/[”g(‘”@/) ff uP* dmdt TJ,
r=(o’ —

< EPi+1+IT(

where ® = 1 + %.Observe now that r; — ¢ as i — oo, all sum above are finite and Z;’;O 0/ = % + 1. Hence we have,

v C(A4, p,v,
supIqusEiw

lulPdmdt, ¥ p > 2.
0 ( 0y

& — 5)v+2rv+2

where E = CMrZV‘%(x, r). We note here that the inequality which we used to reach the desired result is (5.2.23)) for
p = 2. Thus the function u € LZ} Q) for p > 2, and we have the inequality (5.2.23) for any p > 2. Also we note that
since u € L}, (Q) we can set G(r) = =1 and by the same arguments to reach to the desired result where the constant is

independent on p.

Now we prove the statement for p € (0,2). We have shown that for any ® € (0, 1)

C/l,vc %
suplud < ((1( ‘@) )222f| |dmdt :

flul dxdt < IIuIILw(Q)flul”dmdt.
Q0

1
) 31 C
sup luef < (((1 o) )n+2||M||Lm(Q) f Jualf dde §||u||L°°(Q) + ((I—MHMHLF(Q),

-’

For p € (0,2) we have

Hence,

where in the last inequality we have used the Holder inequality. Now set f(6) = supy, |ul, then for any © € (0, 1) we

have . c
F©) < S f(1) + ————Fllullero)-
2 @

-O)r)»
We apply the Lemma[5.2.4]to get

C
O<— o
f(©) ((I_G))r);”u”L(Q)

which is the desired result for 0 < p < 2.

If d(x) = yr, we do the same approach as before, but for the admissible test function we set ¥(y) = f(‘x%l) instead of
&y’ = X'Dé(lyn — a(y’) — d(x)]) and we use the fact that B(x, r) = B(x, r) (thus we don’t need to use of Theorem[5.2.2).
O

Lemma 5.2.4. Let f(t) > 0 be bounded in [ty, t;] with ty > 0. Suppose for ty < t < s < t1, we have

A
f@) < OF() + =+
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for some ® € (0,1) and a > 0. Then for any ty <t < s < t| there holds

A

1< COa( =,

+ B).

proof: Fix fp < t < s < t;. For some 0 < 7 < 1, we consider the sequence {f;} defined by o = ¢ and 7;;; =
i+ (1 = T)7i(s — 1). Note to, = s, since t;,| = to + 23:0(1 —)i(s—1) > s.

By iteration

A A kel
F) < Of(1) + ot B<..<Of1) + [(S 5 B] ; eir i,

choose 7 < 1 such that @7 < 1, thatis, ® < 4 < 1.
As k tend to infinity, we have

f) <CcO)(A -1

Go1r + B).

5.2.2 Properties of Super Solutions

Similarly with Definition , we call a function v € C'((s — %, 7) : Hé(%(x, r) N Q)) supersolution of 1| if for
each0 < ® € Cy((s — r*,r) : CY(B(x,r) N Q)) and for each s — r* < 1; < 1, < s we have

153 (D
(5.2.04) f f v + VoVD + A ———dmdt > 0,
fn IBEINQ 1 +d*

where dm = ¢?dx.

Theorem 5.2.5. Let Q C R” be a exterior domain not containing the origin, v = n+ 1,y € (1,2) and p > 0. Then there
exist constant co(Q) and C(v, A1, co) such that for all x € Q with yr < co and for any positive supersolution v of

in Q, we have the estimate

C
supv| P <

“Pdmdt,
o @~V Jg, 1AM

foreach0 <6 <¢ <1.

proof: Set u = v + ¢, then u is bounded away from zero (at the end of the argument we send ¢ to origin). Thus by

(5.2.24) we have for any @ € C§’ (B(x, R) N Q°)

du

Brna 1 +d*

D
f D + VuVD + A ———dm > &|d,|
BRNQ 1 +d*°

> —|4] uddm.
B,RINQ

We set @ = —Buf~'y?, where 0 < ¥ € C(B(x, R)) and B < 0. As ¢ € H}(B(x, R)), we have ®,, = =28 'y, — BB -
Du’~2yu,,. By the same arguments as in Theorem , @ is a admissible test function (if d(x) < yr), thus we can use
itin (5.2.2) to yield
-B f PN udm - 2B yiP'VuVydm - BB -1) VP2 VulPdm
B,RINQ BRINQ B(xRNQ

> =248 WPdm
B(x,R)NQ
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Now we set w = ug. Then w,, = gug‘lux[ and the above inequality becomes
2,2 B-1 2 2
- yrw),dm -4 ywVwVydm - 4—— v IVwl|“dm
B(x,R)NQ Bx,RNQ B B(x,R)NQ
(5.2.25) > 2|48l wPwrdm
BrLRINQ
Now,
4] YywVwVydm| < 4f [ Iw|I[Vw||Vildm
BxRNQ B(x,R)NQ
< 2 f W12 Vw)>dm + C() WV > dm.
B(x,R)NQ Bx.RNQ

Thus by the above inequality and (5.2.23)) we have

+1
f wPwW)dm  + 4L8| f WP \VwlPdm — A f W2 Vwl>dm
B(x,R)NQ |B| B(x,R)NQ B(x,R)NQ

< CW) WP IVyl2dm + 2|14,1|8] wPwrdm.
B(x,RNQ B(x,RNQ

Finally if we choose A = 1 then 4L3|+l — A > 1 and the above inequality becomes

f PPydm + f WRIVwidm
BrRNQ BLRNQ

(5.2.26) < C) WV Pdm + 2], 18] y>wrdm.
B(x,R)NQ B(x,R)NQ

Also,

+
|

1 1
f P (wP)dm f IV (w)dm = f PP ydm + © f W PIVwidm
B(xRNQ 2 Jsrna B(xRNQ 2 Jsrno
+ = f w2V Pdm + f YWV Iw)Pdm
2 Jsrne BLRINQ
1 1
f Yrwhdm + = f WP Vwlrdm + — W Vyl*dm
B(x,R)NQ 2 B(x,R)NQ 26 B(x,R)NQ

1 1
+ = f W2 Vwi>dm + = f Iw?|Vy*dm
2 Jsxrno 2 Jsxpna

Cc) WV 2dm + 2|4,|8] wPwrdm.
B(x,RNQ B(x,RNQ

IA

IA

Now working as Theorem [5.2.3 we have

+2

[ it (S22 [
s—12 IBx,R)NQ B (R—-r)? B(xR)ﬂQ

where E = CMer;v2 is the constant of Theorem Replace now w = ug, we get

§ C+2 A
f f P Ddmdr < E COLB! ! f f ﬁdmdt
s=r2 JBRNQ (R-r) R Jspna

This is the analogue of Theorem [5.2.3]and the iterative steps give the desired result. O

+2
+5
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In order to state the next result we need to introduce the following notation.

Qs =(s—1r"s—(1-6)r")xB(x,6r) N Q

Theorem 5.2.6. FixO0 < pp<® =1+ %, v>n+1,y € (1,2). Then there exist constant B(2) and C(v, 41, ¢o) such that
forall x € Q with yr < ¢y, forany 0 < p < % and for any positive supersolution v of in Q, we have the estimate

Po )4
> A I=25
”Ozddt) <( ) f P pdydt
(Lg |M| ¢ Y = (6/ _5)(2+y)(l+®)r2vv(x’ r) o |u| ¢ yat,

5

foreach0 <6 <¢'.

proof: First the case d(x) < yr
Set u = v+ &, then u is bounded away from zero (at the end of the argument we send ¢ to origin). Thus by the definition

of supersolutions we have for any ® € C;’B(x, R) N Q

] 0]
f WD+ VWh+ 4 ———dm > sl —
B(x.RNQ 1 +d=e spne | +d7
(5.2.27) > -] u®dm.

BxRNQ

We set @ = Buf~!y?, where 0 < ¢ € C7(B(x,R)) and 0 < B < 2. As ¢ € H)(B(x,R)), we have ®,, = 280 'y, +
BB — )P~y *u,,. By the same arguments as in Theorem [5.2.3} @ is a admissible test function , thus we can use it in

(5.2.27) to yield

B PP udm + 28 Yyl 'VuVydm  + BB -1) VP2 \VulPdm

B(xRNQ B(x,RNQ B(x,RNQ

> 2|4 WPdm
B(x,RNQ

B B . -
Now we set w = u2. Then w,, = gui‘luxi and the above inequality becomes

-1
f WPW)dm + 4 f ywVwVirdm  + ity f W IVwlrdm
B(x,RNQ B(x,R)NQ B B(x,R)NQ
(5.2.28) > 2|4 wPwhdm
B(x,R)NQ
Now,
4 IWVnVydm| < 4 f AWV WlIVyldm
B(x,R)NQ B(x,R)NQ
< 2 f WA Vwdm + C(2) WPV *dm.
B(x,RNQ B(x.R)NQ
Thus by the above inequality and (5.2.28) we have
(5.2.29) - f Potydm + (1= 22 WP \VwlPdm — A f W2 IVw2dm
B(x,R)NQ ) B(x,R)NQ B(x,R)NQ
< CW) W |IVy2dm + 2|4, vPwhdm.

B(x,R)NQ B(x,R)NQ
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_n
Finally if we choose A = ! 5% then the above inequality becomes

_ bk

—f P)dm + @f WPIVwPdm
BOr,RINQ 2 BOr,RINQ

(5.2.30) < C(po,v) WPV Pdm + 2|24 yPwidm.
B(x,RNQ B(x,R)NQ
Also,
1 -2
- f PPydm + —© f IV (w)Pdm
B(x,R)NQ 4 B(x,R)NQ
1 -
= - f WP (w)dm + —2 f WPV wlPdm
B(x,R)NQ 4 B(x,R)NQ
1-£& _ R

+

1
© f WPy Pdm + —© f WV wdm
4 Br,RINQ 4 B(LRINQ

_m j2)

<- f WPwWdm  + © f WV dm + © f W |Vy > dm
B(x,R)NQ 2 B(x,R)NQ B(x,R)NQ

< C(po,v) WPV Pdm + 214 yrwidm.
B(x,R)NQ B(x,R)NQ

Now multiply the above inequality by a bounded function y*(f) € C*(R) to reach
2

- ° f XV (w)Pdy

dt Jrne B(x,RNQ

(5.2.31) < COs plllsUbell=IV¥lZs + Il + 1)) Iwl*dy.
B(x,R)NQ

X2 ‘7&2 W2 dy +

we choose y(1) € C'(R) such that 0 < y < I, y(t) = 1 in (=c0,s — (1 = 8)r?), x(t) = 0 in (s — (1 — &)r?, o)
and |y/| < ﬂ(ts}—ﬂS)?' Also we choose a function ¥ = &(Iy" — X'Dé(ly, — a(y’) — d(x)]), where ¢ € C*(R) and satisfies
0<&<1,8s) =1ifs < drand&(s) = 0if s > 6'r. Now, we integrate (5.2.31) from t to s — (1 — ¢")r* for some

te(s—r*s—(1-6)r) and letting ¢ go to s — r*> we have
s—(1-6")r?
sup f YPwidm  + f f IVyw)rdm

te(s—r2,s—(1-6)r?) J B(x,R)NQ s—r? B(x,R)NQ
C(v, po.co) (70"

< — |W|2dm,
(6, - 6)2}’2 s—r2 L(X,R)QQ

-4
20

thus we have as in Theorem (5.2.3),

2

C , 9’ 1+
f |WI(]+%)dmdt < E(% wzdmdt) =3
Q; T (6 - 5) Q;,

C b t G)
(5.2.32) f PP dmdr < E(M uﬂdmdt) ,
0, r (5/ - 6) Q(/s’

forall 0 < 8 < % and for E = Cyr*V=3 (x, r) Define now p; = pg®~', r; = & = (8’ = 6) 23:1 27/ and ry = ¢'. Now since
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POt < B we have by (5.2.32) forany j = 1,..,i

f f |u’® dydt
0.

(22jC(V, €0, Po)

. (©]
@/
o u®” dyar)

Ti-1

) ek o/
< EZi;rlm @k(—CZ(V,/C(),P()Z) )Zk:] 4 i:l(j*kJrl)@k(f upidydt) )
r (5 —5) Q;ifjﬂ
The above inequality holds for all j = 1,...,i. Thus for j = i we have
) ek o
|u|P“dydtsEZi;(lJ®k C(v, co, po) Lisi 42;:,(i—k+1)®k uPidydt| .
o r2(6’ — 6)? 2,
Finally we note that
i . k V3
2i—oi—k+1)O" < (3) ®(i>7_(,-) -1
r; > 0
i1 Nk _ v
S® =361
Y O =1+ %)((’f - D).
Thus we have " o
201y C(v, o, po) I+ DG D I
f f uPodyds < E3 D(M) N (f u”dydr)”.
o ri(¢ —9) o

To obtain the desired inequality for any p € (0, £2), let i > 2 be the integer such that p; < p < p;_;. Then

a1+ G))(% - plo). Thus, by Jensen’s inequality we have

1_1 <
Pi Po

Po

.(C(n,0, 1+@)A+H)(2=1) 1 1 (1551 o
f |u|p°dmdtSE5((’:l—p(2))) ’ (—2) o ( f qudmdt)’
0, (6" = 0) r o,
L (C(v, co, WO+ =D s | \A+DEE-D 5y _py f
SEE((’—OP;Q) 205 (_2) 205 V”? ,?(x,r)(f Mpdydt)] ’
(6" = 6) r 2

which is the desired result since E = C Mer%z. If d(x) > yr, we do the same approach as before. But for the admissible
test function we set Y(y) = §(@) instead of &y’ — x')é(ly, — a(y’) — d(x)|) and we use the fact that B(x, r) = B(x,r)
(thus we not need the use of Theorem [5.2.2). m

5.3 Harnack Inequality
In the following lemma we see the importance of Theorem
Lemma 5.3.1. Let v be any positive supersolution of problem in (s —r2,5) X B(x,r) N Q, where yr < cq and
v € (1,2). Then there exists a constant ¢ = c(u,n, cy) such that, for all 1 > 0,
u({(t,2) € Ky s logy < =1 —¢})) < CrP !
and
u({(t,z) e K_:logv>A—-c}) < crrma!,

where y = ¢2dxdt K, =(s—- nrz, X B, 6V NQand K_ = (s — 12, s — 77r2) X B(x,0r) N Q. Here the constant C is
independent of A > 0, v, s and the radius r.

proof: Note that § and n play somewhat different roles here. The parameter ¢ is used to stay away from the boundary
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of the ball 8. The parameter 7 is used to define a fixed point s = s — nr? in the interval (s — 2, s) away from s — r> and
s.

Let us first observe that (by changing §) we can assume that v is a super-solution in (s — 72, s) X B(x, dr) N Q° where
B’ is a concentric ball larger than B(x, r). We set w = —logu, where u = v + &. Then, for any non-negative function
¥ € Cy(B'), we have

w2
,( z,bzwdm) = —f —u;dm
B(x,r)NQ Bx,HnQ U
Y 2
< VuV(=)dm + 2|4, W2dm
B(x,r)NQ u B(x,HNQ
< 26 f VW[ Vildm — f W2 IVwiPdm + 2|4 vrdm
B(x,r)NQ B(x,r)NQ B(x,r)NQ
1
< - f W2 |\VwlPdm + C f IVyl2dm + 2|4, Wrdm =
2 B(x,r)NQ B(x,r)NQ B(x,r)NQ
1
(5.3.33) o YPwdm) + f P IVwidm < CAVUIE, + 20 Du(suppu).
B(x,r)NQ B(x,r)NQ

Here we have two cases.
First case d(x) < yr.
We choose ¥(y) = (1 — [x = y|/r)+(1 - M)J,. By Theorem we have

f w— WPy dm < Agr? f IVw[y2dm,
B(x,r)NQ B(x,r)NQ

with

2
_ Agi(x,r)ﬁﬁ W"b dm

W= —2
ngi(x,r)ﬁﬂ l// dm

Second case d(x) > yr.
Here, we choose ¢/(y) = (1 — |x —y|/r)+. Due to the fact that c¢(x) < ¢(y) < Co(x) for any y € B(x,r) N Q = B(x,r), by
Lemma (5.1.4), we have for y2(y) = O(y)

f w — WPy dm < Agr? f IVw[?y2dm,
B(x,r)NQ

B(x,r)NQ

with

2
f%(x,r)ﬁQ Wl’b dm

Wit = ——.
« f%(x,r)ﬁQ y2dm

Now using the fact that
f Wrdx > C(S)V(x, r).
6B(x,r)

By (5.3.33), 1 < < and the weighted Poincaré inequalities, we have

C(%)

W+ 2
Vre Jssnne

lw — WAy dm

- 0 fas(x,ar)nﬂ wytdm . C(6)
- C@)V V(x, r)r?

f w — WyPdm < Ax(co, A)r ™2,
B(x,6r)NQ
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for some constants A;, A, > 0. Rewrite this inequality as

(5.3.34) AW + (A1P2V(x,r)™! W — W'Pydm < 0,
B(x,6r)NQC

where

W (t,2) = w(t,z) — Aar (1 = §'),
W'(t) = W(t) — Aar 2t — 5),

with 5" = s — 2.
Now, set c(u,n) = W'(s") and
Qf (1) ={z€ B(x,6r) : w'(t,2) > c+ A}

Q; (1) ={z€ B(x,6r) : w'(t,2) <c— 4}

Then, if t > s/,
wit,z2) =W =A+c—-W'(') > A,

in QF (1), because ¢ = W’(s”") and 9,W’ < 0. Using this in (5.3.34)) we obtain
AW +(Cr*V(x,nN) A+ c—- WP W) <0,

or equivalently,
—CrVo,((IA +c =W (O™ = m(QF ().

Integrating from s’ to s, we obtain
ul(t,2) € Ky W (t,2) > c+ A) <CrAV(d+c - W (sH) < Crvix, nat

and returning to —logu = w = w' + Ayr2(t — )

IA

u({(t,z) € K :logu(t,2) < —c — 4}) u({(t,2) € K, :logu(t,z)+ < —c — %})

ul(1,2) € K, Aar (= ) > 5)

+

IA

A
CrVAT +u(((1,2) € K Aor (1= 5) > ).
Now consider two cases.
1. 0 < 4 < 275A,, then

A )
u{tz) e Ky it > Z—Az+s_nr )

u(l(1,9) € Ky A=) > 5)

21 24,12
< (_;Td + nr2)+V(x, r) < ZTITzr V(x,r).
2. 1>2A,, then
-2 2
—+ =0
( 24, nro)s

Thus, in all cases we have
u((t,z) € Ky :logu < —A—c}) < Cr*V(x,ra™".
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This proves the first inequality in this Lemma. Working with €, instead of Q;, we obtain the second inequality by the
same argument. The result follows by sending & to origin. O

Let us prove an abstract lemma which we use in the following theorem.

Lemma 5.3.2. Fix 0 < ¢ < 1. Lety, C be positive constants and 0 < ay < co. Let f be a positive measurable function
on Uy = U which satisfies,
1flleg.,r < [Co = o) 7)1 fl 0,

forall o, 0/, asuchthat0 <6 <o’ <o <1and0 < a < min{l, ay/2}. Assume further that f satisfies
p(log(f) > ) < Cu()A”!

forall A > 0. Then
£ llag.vs < Au(U)''®,

where A depends only on 6, ,7y, C and a lower bound on «.

proof: For the proof, assume without loss of generality that 4(U) = 1 and || f||o,.v, > 1, also we assume that :
Y =y(o) =1og(lflleg.u;) = A1 >0, for 0<d<o <l

Where A; depends only on a lower bound on @, which we will determine later.

Decomposing now U, into the sets where log(f) > /2 and where log(f) < /2, we get

l/a l/a 1/
1l = ( f 1) ( f rdu) f /1)
Uy UgsNilog(f)>y/2} UsN{log(f)<y/2}

2C I/a—1]/ay
fllay.0elog(f) > /2 Vo104 012 < ew(?)

IA

(5.3.35) + e,

IA

Here, we have used successively the Holder inequality and the second hypothesis of the Lemma. Now, we want to
choose « so that the two terms in the right-hand side of (5.3.35)) are equal and 0 < & < min{1, /2}. This is possible if

(2C)1/a—1/ao

-1
) e o 1o —1/ag = (—w/2)(log %C) =

1+CY()C

1/a>1 +C =
/a_ /(lo (o)) @ 1+0z0C

< min{1, a/2)

and the last inequality is certainly satisfied when
(5.3.36) Y > Ay = max{2C, 1/a’},

where @’ is a lower bound on «.

Assuming that (5.3.36) holds and that @ has been chosen as above, then we obtain

(5.3.37) 1 fllag.v, < 272

The first hypothesis of the Lemma and (5.3.37) yield

Yo' < (1/a—1/ap)log(Clo— o))+ ¢ /2 +log2, for<é<o <o <.
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By our choice of @, specified above, we have

log(C(o—0')7)

W) S

+ 1)+ log2.
On the one hand, if

(5.3.38) Y >2C0 - o),

we have

w(o") < B/4y + log 2.

On the other hand, if one of the hypotheses (5.3.36), made on ¢ is not satisfied, we have
Yo <y <A +2C (0 - o).
Thus, in all cases, we obtain
(5.3.39) Yo' <Y <Ay +2C3 0 - )Y,
where A, depend only on C and on a lower bound on ay. For any sequence
O<d=0p<o01<..<0;<1,

an iteration of (5.3.39) yield .
Y(o0) < /4l + Ay ) BIH (e — o)

=0

and while i tends to infinity, the last inequality becomes

0o

(o) < A ) BN (e — o)

Jj=0

Now, if we set o =1 — (1 + j)~'(1 = 6), we have

DG - o) < -6,
7=0
and the desired bound follows. O

The following Theorem states that positive super-solutions satisfy a weak form of Harnack inequality. For any fixed
7>0,6€(0,1)and x € M, s,r > 0 define

0. = (s—=B+6)r*/4,s— B =06)r*/4) x B(x,6r)NQ,
QO = (s—r4,s—(3B=8r/4) xB(x,6r)NQ,
0. = (s—(1+06r?/4, ) xB(x,6r)N Q.

Recall also that Q = Q(x, s,7) = (s — %) X B(x, r) N Q. Let us now prove a lower bound for positive supersolutions.

Theorem 5.3.3. Fix py € (0,1 + %). Then there exists a constant A such that, for x € Q, s € R, 0 < r < ¢y and any
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positive function supersolution u of problem (5.0.3) in Q, we have

( 1 pog 1/po Ainf{u)
—_ uh° ) < Ainf{u},
W) Jo. " 0.

where yu = ¢>dxdt.

proof: Fix a non-negative super-solution u. Let c(u, i) be the constant given by Lemma(5.3.T|applied to u with = 1/2.

Set v = e‘u. Set also
O1=(—-rs=1/2D)XBx,NNQ, Qs =(s—1r",s—3—0)r?/4) x B(x,or) N Q.

By Theorem[5.2.6| we have

p/po A 1=p/po
(f upody) < [ (PO»?) ] f uPdu,
/ (0" — &)U+ r2V(x, 7)

forall0 <6 <o’ <o <1land0 < p < py(l + 2)~'. By lemma5.3.1| we have
llogv > A| = [logu > A —c| < Cu(Q)A".

Thus we can apply Lemma to conclude that st vPodxdt < Ajpu(Q), that is

1 1/po
(5.3.40) (@ fQ / (ecu)”od,u) <A,

Set now v = e~“u”!, where ¢ = c(u) is the same constant as above, given by Lemma applied to u with . = 1/2.
This time set
0 = (s—(1/2r*, ) X B(x, 1), Q) = (s — (1 +0)r? /4, 5) x B(x,07).

By Theorem[5.2.3| we have

sup{v?} < Ap.v)

vdu,
0. (0" =) r2V(x,r) Jo, #

forall0 <6 <o <o’ <1and0 < p < co. By Lemma[5.3.1] we also have
ulogv > ) < Cm/(Q))A".
Thus we can apply Lemma|[5.3.2]to conclude that supg,{v} < Ayu(Q), that is

(5.3.41) sup{(e‘u)"!} < A,.
0.

Multiplying (5.3.40)and (5.3.41)), we obtain

(—1 poaxdi) < Ainfiu)
uPodx t) < Ainf{u},
Hoo) Jor 0.

which is the desired inequality. O

Theorem 5.3.4. Fix 0 < 6§ < 1, then there exists a constant A such that, for x € Q, s € R, 0 < r < ¢¢ and any positive
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solution v of problem in Q= (s—r?)xB(x,r)NQ, we have

sup{v} < Ainf{v},

Q7 Q+
where
O_=(s=GB+6)r*/4,s— (3 —=06)r*/4) x B(x,6r) N Q
0, = (s— (1 +6)r?/4,s) x B(x,5r) N Q.
proof: This follows immediately from Theorems[5.3.3|and [5.2.3] m

Corollary 5.3.5. Let R = 4C—; be the constant of Lemma Let u be a non-negative solution of (6; + Ly)u = 0
in (0,T)x Q, T > 0. Then there exist constant A such that the following estimate is valid for all x, y € Q and all

O<s<t<T.
u(s,x)<

o8 u(t,y) =

2
r—s t—s X —
+ +| yl )

A(1+
R? s t—s

proof: Now, by our assumption on Q we can assume that there exist a length curve y : [a,b] — Q, such that,

y(a) =y, y(b) = x and |ly|]| < Cy|x — y| where C, depends on diameter of Q2. Then

b d b
¢1(x)—¢10’)=f E(‘ﬁl()’(l)))dl:f Vo1 (y(0)y(n)dt

b
< f (0ldt < Colx = 1.

Connect the points x y by balls By, ..., By of radius 5 and centers xo, .., X1 With xo, ..., x;-1 € y and x;41 € %i, 0<

i <k — 1 with x; = y. This is possible as soon as,
(5.3.42) kr > 2|y|.

The values of r and k are to be chosen later. Let ty = s. ; = s + r%i, 0 < i < k. Now choose r to satisfy the following
conditions:

(i) 7 = (t — 5)/k so that t; = . Note that this implies  — s > 2.
(i) » < R and r* < s so that u is a solution (8, + Ly)u = 0 in each of the cylinder (#; — Pti) X28;0<i<k-1.
Then, applying Theoremsuccessively in(t; — 2, 1) x2%8;, 0<i<k-1, we obtain

u(ty, xo) < Aou(ty, x1) < A(Z)u(tz, X) <. < A{‘)u(tk, Xk,

that is,
u(s, x) < A’gu(t, y).

Now, (5.3.42) is satisfied if k > d?/(t — s) because kr = +k(t— s) by (i). Similarly, (ii) is satisfied as soon as
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k > (t — s)max{1/R?, 1/s}. Thus, we can choose k of order

This gives the desired inequality. O

Definition 5.3.6. We will say that v € C'((s — r,r) : H' (B(x,r) N Q)) is a weak solution of if for each
® e Cy((s—r*r): CY(B(x,r) NQ)), for each s — r* < 1 < 1, < s we have

& vO
v;® + VyWVO + A, —2dxdt =0.
f B(x,r)NQ 4d

Corollary 5.3.7. Fix 0 < ¢ < 1, then there exists a constant A such that, for x € Q°, s € R, 0 < r < ¢q and any positive
solution u of problem inQ=(s—r?)xB(x,r) NQ, we have

Sg,p{g} < Ai&f{g},
where
0_=(s—GB+6r?/4,s—(3-6)r’/4) x B(x,6r) N Q
0, = (s—(1+6)r?/4,s) x B(x,5r) N Q.

proof: If we set u = ¢v, then we note that v is a non-negative weak solution of problem (5.0.3). Thus by Theorem[5.3.4]
we have

sup{v} < A inf{v}
o- [

and the result follows. a

5.4 Localized Heat Kernel Bounds

We recall the first eigenvalue of the problem

) Jo IVulPdx =1 [ %
2 ’

—00 < Al = in P
Q 1+d2+

ueCy (Q)
where o > 0. Also, we recall the ground state function ¢ in the introduction of this chapter. Let h4(?, x,y) be the

respective heat kernel of the following problem

div(¢2Vv) %

(5.4.43) =Gl = — 55— i

in (0,T] x Q.

‘We note here that if 1; < 0, then we set Eﬁ(t, x,y) = el he(t, x,y). Then Z¢(t, x,y) is the heat kernel of the problem

B div(¢*Vv) _2 v

(5.4.44) v, e v

+Av, in (0,T]1xQ,

ie. E;(t, x,y) is positivity-preserving for all 0 < ¢ < co. Thus without loss of generality we assume that 4; > 0.

In this section we prove the two side estimates for the heat kernel /.
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5.4.1 Localized Heat Kernel Upper Bounds

For any function ¢; € C(Q) with [[Vé1]l < 1 and any complex number a, consider the semigroup defined by

H:;,({)]f(x) = g () fh¢(t’ X, y)eutﬁl(y)f(X)dm = e—a¢1(x)Ht(ea¢1f)(x)'

It is clear that this is a well-defined semigroup of operators on the spaces L”(€2, m). Its infinitesimal generator is given
by
~Aag f = =5 ).

When a is real this semigroup preserves positivity but there is no reason that it contracts L?(Q,m), forany 1 < p < oo.

It is not self-adjoint but its adjoint simply H, “?'The next lemma estimates the norm of this semigroups on L*(Q, m).

Lemma 5.4.1. For any function ¢; € Cy(R") with ||[Véille < 1 and any real number a, the semigroup (Hf’¢‘),>0
satisfies
Vi> 0, [[H o < e

proof: Set u(r) = IIHf’¢1f||2, f € L*(Q, m). Then u has derivative

W(t) = =2 < AgoH" fLHS f >
Thus, it suffices to show that
(5.4.45) <Aug fo f >2 =l fI5,

for all f € C7(Q). If this holds, we have v’ < a®u, that is u(f) < e”ztu(O) = et IIf ||§, the desired inequality. To prove

(5.4.45), write
f2

d
o 1+aze ™

f IV fI>dm — a* f \Vol?|fdm > —a? f |f>dm.
Q Q Q

Where we have used that 4; > 0 and the fact that [V¢| < 1. This proves the Lemma. |

<Agp fo f >=< =P Ly f), f > = f V(e F)V(e ™ fdm + A,
Q

v

Theorem 5.4.2. There exists a constant A such that, for any € € (0,1), for vy € (1,2) and any two balls B, =
B(x,r1), By = B(y, r2) (see Definition.1.1), we have

C (_Ix—yl2 Ix—yl)

Ve Vo2 P\~ gy T AT

h¢(t, X, y) <
forallt > g2 max{rf, r%}.
proof: Let (H,“ 91 )i=0 be defined as above. By Lemma lb we have
2
IH o < €.

Fix x,y € Qand r|, r, > 0 and y (resp x2) be the function equal to 1 on B; = B(x, r|) (resp B, = B(y, r»)) and equal
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0 otherwise. Then
ff h(t, &, é’)e—a(iﬁl(f)—fﬁl({))dm(é_-)dm(g) =<1, H;L(m)(g S
(£,0)eB1XBy
< H™ oallyilbllall < e'VE(x, r)VE(, ).

Now, by our assumption on ) we can assume that there exist a length curve y : [a, b] — Q, such that, y(a) =y, y(b) = x

and ||y|| £ Colx — y| where Cy depends on diameter of Q. Then

b d b
¢1(x)—¢1()’)=f d—t(¢1(7(l)))df ngbl(y(t)))'/(t)dt

IA

b
f ly(@ldt < Colx — yl.
a

Thus,
f f hy(t, &, Odm(E)dm({)
(€,0)EB1XBy
= f f hy(t, &, £)e~OEO-HE) (a@1(E1=61€) g=aldr (I-0100) a1 (010D () dim(£)
B, xB, ’ ’
(5.4.46) < Vi, r1)V%(y, ) exp(a’t + a(gi(x) — p1(y) + (y + Dlal(ry + r2)),

since d(x, &) < (y+2)r and d(y, {) < (y+2)r, (see Definition[5.1.1). Without loss of generality we assume that r, > ry.
As u(s, ) = hy(s, &, ) is a positive solution of (9; + Lg)u = 0in (0, c0) X Q, assuming that ¢ > r% and applying Theorem
(3:23) with p = 1, we obtain

:
SE(t—— 1)

C !
sup (hg(s,&,y) < Mer Lz he(s, &, Odm({)ds.

Thus, by the above inequality and (5.4.46) we have

CVi(x,r) )
(5.4.47) sup  (hy(s, &, y)dm(§) < ————exp(a’t + a($1(x) — 1(y) + (¥ + 2)(y + Dlal(r + r2)).
1 SE(t—é,t) 2 (y’ r2)
By the same token, working with the variable £ and assuming 7 > rf, we get
C !
he(t,x,y) £ ——— f f hy(s, &, y)dm(€)ds
‘ rVx,r) Jipa Js, ‘

c

————————exp(@’t + a(¢1(x) — 1) + (¥ + Dal(ry + r2)),
Vai(x,r)Vi(y, r)

where we have used (5.4.47). Taking a = — 22000 and assuming ¢ > &2 max{r?, 3} we obtain

t 1°

_ 2 _
(1, %,y) < < exp - 161(x) t¢1(y)| 161(x) ¢1(y>|)_

2
[V(x, r)V(y, )] 4 +e(y+2) 7

Taking (as we may) a sequence of ¢; € Cj’(R") with [V¢;| < 1 and

¢i(x) — ;i (y) = |x =y,
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finally gives

h(t, x,y) < +ely+2)——

V. VG )]} ew(- =5 Vi

which is the desired result. ad

=P Ix—yl)

Corollary 5.4.3. LetR = 4C—;), be the constant of Lemma Then there exist constant A such that the following upper
bound for is valid for all x, y € Q and all 0 < t < R?.

A |x — yI?
h¢(t’ x,)’) < t 1 1 exp( - )
2
[V(x, Vi+x—y| WG, Vit x-yl )l 4

proof: This follows from applying Theorem with B = B(x, 1), By =By, 1), r =r = eVt e =( f_},‘). |

14|

By Lemma (5.1.2) we have

Ve V- ( Vi+x -y )”“
V( Vi ’

thus, we can deduce from the bound above a slightly less precise but nicer looking estimate, namely, for all x, y €
Q, 0<t<R%

13
X — 1L
’ \ﬁ+\x—yl)

Vi+x=y\n+1
(Lt

lx =y
he(t, x,y) < A ; - .
#65) [V(x, VOV(y, VD)]2 exp( 4t )

Furthermore, note

_ n+l _ 2
(M) < C,exp (Cnu) < C(n,e)exp (3|x ) ),
Vi Vi t
for all £ > 0. Thus we have
A _vl2
(5.4.48) hot, x,y) < ] exp( _ckx )
[V(x, V))V(y, V]2 4

5.4.2 Heat Kernel Lower Bounds

The Harnack inequalities of section (4.3) easily yield heat kernel lower bounds. First, we have the following on-

diagonal bound.

Theorem 5.4.4. LetR = f—; be the constant of Lemma Then there exist constant A such that the following lower
bound is valid for all x € Q and all 0 < t < R?.

C
hy(t, x, x) > .
TR

proof: Fix 0 < 7 < R%. Let 8 = B(x, V1) N Q. Let £ be a smooth function such that 0 < ¢ < 1, ¢ = 1 in B(x, Mty and
{=0inR"\ B(x, #). Also let  be a non-negative solution of

—div(g2Vn) + L %= = 0 in B(x, ¥)nQ
n=1 on aBx,L)nQ)



5.4. Localized Heat Kernel Bounds 101

By Harnack inequality we have for any y € B(x, 5-) N Q

1
En(y) < n(x) < Cn(y),

letting y to go to a point of the boundary we have

1
C <n(x)<C.
Define

H,d(y), ift>0
u(t,y) = {

ifr<0

where @ = {n. Obviously, this function satisfies
0 +Lgyu=0

on (—oo, ) X B(x, ﬁ). Applying Corollary (5.3.5)), first to u and then to the heat kernel (s,y) — h(s, x,y), we get

1

— < u(0,x) < Au(t/4,x) = Af hy(t/4, x,y)P(y)dm(y)

c B(r, ¥ )0

< cA? f hy(t, x, X)dm(y) < CA*V(x, VDhy(t, x, x).
B(x, Vi)
This gives
hy(t, x,x) > C2 A2V (x, VD',

as desired. |

Theorem 5.4.5. Let R = 4C—; be the constant of Lemma Then there exist constant A such that for all x, y € Q and
all 0 < t < R? the heat kernel hy(x,t,y) satisfies

a |x _ y|2
h(tax’ )Z eX (_A ).
N Y t
proof: Apply Corollary (5.3.5) to u(s,y) = h(s, x,y) with x fixed and s = £. This gives
t 2
hy(t, x,y) > Ah"’(Z’x’y) exp( _alx tyl )

The result follows by Theorem (5.4.4) and Lemma[5.1.2] i

Consider now the heat kernel A(z, x, y) of u, = Au + Then we have the following theorem

i

Theorem 5.4.6. Let R = 4C—f, be the constant of Lemma Then there exist constant A such that for all x, y € Q and
all 0 < t < R? the heat kernel h(x, t,y) satisfies

Cl[mm(d(—j_) 1) (d\/y_ )rt—; exp(—A1@)

< h(t, x,y) < Cz[mm(% )mm(% 1)] gexp(—A2|x_y|2).
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proof: We note here that i, x,y) = ¢(x)p(»)hy(2, x,y). For hy(z, x,y) we have the following estimate

a

1 2l ex
Vi, VOVEG, V)

lx — yI?
t

ai

1 1 €
Va(x, V)V (y, Vi)

Ix—ylz)

—A
(475

xp(—A1 )Sh¢(t,x,y)s

We also have
d(x)

1|x|2an+l

where a, = % + 4/ (”;2)2 - }1. Using now the Lemma|5.1.2| we have

d(x)

|x|2a,,+l ’

<F(x) < Cy

[N

%,l)t %,l)t

Thus combining all above we have the desired result. O

2
S <G, min(

Cy min( < Ve ND
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