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Abstract

This thesis is separated in three main themes:

A) Let Ω ⊂ IRn be an open domain that contains the origin. We find conditions on the potential V which ensure

the nonexistence of H1(Ω) positive solutions for linear elliptic problems with Hardy-type potentials. In particular, we

prove the nonexistence of nontrivial solutions in H1(Ω) for the equation

−∆u =
(n − 2)2

4
u
|x|2

+ bVu,

where b > 0 is the best constant in the inequality∫
Ω

|∇φ|2dx ≥
(n − 2

2

)2 ∫
Ω

φ2

|x|2
dx + b

∫
Ω

Vφ2dx, ∀ φ ∈ C∞0 (Ω).

The results depend on an integral assumption on the potential V and what is really of interest is that under the same

assumption on V, there is no improvement of the inequality. This result goes against the folklore fact that if there is no

minimizer for an inequality, then we can improve it. We also give an example establishing that this integral assumption

on V is optimal (see Chapter 3).

B) We prove Hardy and Hardy-Sobolev inequalities involving distance to the boundary of domains with infinite inner

radius. More precisely we deal with exterior domains, i.e. complements of smooth compact domains not containing

the origin. We introduce the following new geometric condition on Ω

−∆d(x) + (n − 1)
∇d(x) · x
|x|2

≥ 0,

where d denotes the distance function to the boundary of Ω. We prove that under this condition the following Hardy-

Sobolev inequality for n ≥ 4 holds:

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω).

The case n = 3 is different, we need to assume that Ω satisfies the above condition with strict inequality. Then we prove

the following Hardy-Sobolev type inequality

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

X4(
|x|
D

)|u|6dx
) 1

3

, ∀ u ∈ C∞c (Ω),

where X(t) = (1 + ln t)−1, 0 < D < inf{|x| : x ∈ ∂Ω}. Moreover, the power 4 on X can not be replaced by a smaller

power.

We also obtain Hardy and Hardy-Sobolev inequalities for domains above the graph of a C1,1 function (see Chapter

4).



C) We prove boundary Harnack type inequalities for positive solutions of the problem

ut = ∆u +
1
4

u
d2 in Ω × (0,T ]

u = 0 on ∂Ω

u(0, x) = u0(x) in Ω,

when Ω is an exterior domain without posing any geometric assumption on Ω. Then we prove heat kernel estimates for

this problem for small times (see Chapter 5).
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Chapter 1

Overview

In this chapter we present our basic results in this thesis. In section 1.1 we present theorems on non-existence of

solutions to elliptic problems involving Hardy type potentials with the distance taken from a point. In particular we

state our main results in [Gk]. In section 1.2 we will state new Hardy and Hardy-Sobolev inequalities involving distance

to the boundary of domains having infinite inner radius. Finally, in section 1.3 we present the parabolic problems

involving Hardy type potentials with the distance taken from the boundary of domains having infinite inner radius. We

present new sharp two side estimates for the heat kernel of these problems.

1.1 Distance From a Point
In this section we assume that Ω is an open bounded domain in Rn; n ≥ 3, containing the origin.

The classical Sobolev inequality asserts that

∫
Rn
|∇u|2dx ≥ S n

(∫
Rn
|u|

2n
n−2 dx

) n−2
n

, ∀ u ∈ C∞0 (Rn),

where the constant S n = πn(n − 2)
(

Γ( n
2 )

Γ(n)

) 2
n

is optimal.

The classical Sobolev inequality (for some constant cn < S n) can be proved by the usage of the classical Hardy

inequality ∫
Rn
|∇u|2dx ≥

(n − 2
2

)2 ∫
Rn

u2

|x|2
dx, ∀ u ∈ C∞0 (Rn),

where the constant ( n−2
2 )2 is optimal. The proof of the classical Hardy inequality is very simple:

0 ≤
∫
Rn

∣∣∣∣∣∇u +
n − 2

2
x
|x|2

∣∣∣∣∣2 =

∫
Rn
|∇u|2dx −

(n − 2
2

)2 ∫
Rn

u2

|x|2
dx, ∀ u ∈ C∞0 (Rn).

We consider now the following minimizing problem

λ1 = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx∫

Ω

u2

|x|2 dx
.

Then it is well known that, λ1 =
(n−2)2

4 and this constant is not attained in H1
0(Ω) or equivalently the corresponding

Euler-Lagrange equation
−∆u =

(n−2)2

4
u
|x|2 , in Ω

u 	 0 in Ω,

1



2 1. Overview

has no nontrivial H1
0(Ω) solutions.

The fact that the best constant is not attained suggests that one might look for an error term in

(1.1.1)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx, ∀ u ∈ C∞0 (Ω).

Indeed, Brezis and Vázquez [BV] improved inequality (1.1.1) by adding a positive term in the right hand side.

(1.1.2)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + CΩ

∫
Ω

u2dx, ∀ u ∈ C∞0 (Ω),

and

(1.1.3)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + K

(∫
Ω

|u|pdx
) 2

p

.

In (1.1.3) we assume that 1 < p < 2n
n−2 . The constant CΩ in (1.1.2) is given by

CΩ = z2
0w

2
n
n |Ω|

− 2
n ,

where wn and |Ω| denote the volume of the unit ball and Ω, respectively, and z0 = 2.4048... denotes the first zero of the

Bessel function J0(z). The constant CΩ is optimal when Ω is a ball. But again the minimizing problem

CΩ = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx −

(
n−2

2

)2 ∫
Ω

u2

|x|2 dx∫
Ω

u2dx
,

has no H1
0(Ω) minimizer or equivalently the corresponding Euler-Lagrange equation

−∆u =
(n−2)2

4
u
|x|2 + CΩu, in Ω

u 	 0 in Ω,

has no H1
0(Ω) solutions.

Hardy inequalities as well as their improved versions are used in the study of the solutions of semi-linear elliptic

equations. More precisely, Brezis and Vazquez [BV] firstly applied these inequalities in Gelfand problem

(1.1.4)
−∆u = λeu, in Ω

u 	 0 in Ω,

where λ is a positive parameter. It is well known that there exist a positive number λ∗ > 0 such that the problem (1.1.4)

has H1
0(Ω) solution for 0 < λ ≤ λ∗, while no H1

0(Ω) solutions exist for λ > λ∗. In addition, for λ = 2(n − 2) and

Ω = B(0, 1); the unite ball with center at the origin, one has the singular solution

u1(x) = −2 ln |x| ∈ H1
0(B).

The ”linearization” of problem (1.1.4) leads to the operator involving Hardy-type potential

Lu1 u = −∆u −
2(n − 2)
|x|2

u.
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The authors in [BV] observed that 2(n − 2) ≤ (n−2)2

4 , for n ≥ 10 and they used this fact and (1.1.2) to prove that u1 is

an extremal solution i.e. it is a solution of (1.1.4) with λ∗ = 2(n − 2). For the case n ≤ 9, they showed by (1.1.1) that

2(n − 2) < λ∗ i.e. u1 is not an extremal solution.

Another problem which use Hardy inequalities is the study the solutions of

(1.1.5)
−∆u = λ|u|p ; p > n

n−2 , in B(0, 1)

u 	 0 in Ω.

The above problem has the singular solution for λ = 2
p−1

(
n − 2p

p−1

)
u2 = |x|−

2
p−1 − 1.

The ”linearization” of problem (1.1.5) leads to operator

Lu2 u = −∆u −
2p

p − 1

(
n −

2p
p − 1

)
u
|x|2

.

The authors in [BV] used again the improved Hardy inequality (1.1.2) to prove whether or not the singular solution u2

is an extremal solution of (1.1.5). For further applications of (1.1.2) see [VZ] and [DD1]. Also the improved Hardy

inequalities (1.1.2) and (1.1.3) have been useful in the existence and asymptotic behavior of the heat equation with

singular potentials see [VZ] and [DD1].

Brezis and Vazquez [BV] posed the following questions (cf. Problem 2, Section 8): In case Ω is a ball centered at zero,

are the two terms on the right-hand side of (1.1.2) just the first two terms of a series? Is there a further improvement of

(1.1.3)?

The answer was given by Filippas and Tertikas in [FT]. In particular, they proved the following Hardy-Sobolev type

inequality with critical exponent

(1.1.6)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + C

( ∫
Ω

X
2(n−1)

n−2
1 (

|x|
D

)|u|
2n

n−2 dx
) n−2

n

, ∀ u ∈ C∞0 (Ω),

where X1(t) = (1 − ln t)−1 and D = supx∈Ω |x|. Also, they showed that the estimate in (1.1.6) is optimal in the sense,

that X
2(n−1)

n−2
1 can not be replaced by a smaller power of X1. In addition, it has been recently established in [AFT] that the

optimal constant C in (1.1.6) is

C = (n − 2)−
2(n−1)

n S n,

where S n = πn(n − 2)
(

Γ( n
2 )

Γ(n)

) 2
n

is the Sobolev best constant.

By inequality (1.1.6), the authors in [FT] showed that for each non-negative potential V that satisfies

(1.1.7)
∫

Ω

|V |
n
2 X1−n

1 (
|x|
D

)dx < ∞,

there exists a positive constant b such that the following inequality is valid

(1.1.8)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + b

∫
Ω

Vu2dx, ∀ u ∈ C∞0 (Ω).

Also in [FT], it has been proved that there is no further improvement of (1.1.8) with a nonnegative potential W that

satisfies (1.1.7).

Since we have no improvement of (1.1.8), one would expect that there exists a non-negative potential V that satisfies
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the condition (1.1.7) and the minimizing problem

b = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx −

(
n−2

2

)2 ∫
Ω

u2

|x|2 dx∫
Ω

Vu2dx
,

has H1
0(Ω) minimizer. Or equivalently the corresponding Euler-Lagrange equation

(1.1.9)
−∆u =

(n−2)2

4
u
|x|2 + bVu, in Ω \ {0}

u 	 0 in Ω,

has H1
0(Ω) solution. This reasoning is wrong. The authors in [FT] proved the following more general result

Let V ∈ Lp
loc(Ω); p > n

2 , V− = max(−V, 0) ∈ Lp(Ω); p > n
2 , and V+ = max(V, 0) ∈ L

n
2 ,∞(Ω) where L

n
2 ,∞(Ω) denotes the

Lorentz space with norm

||u||L n
2 ,∞(Ω) = sup

s>0
(s|{x ∈ Ω : |u| > s}|

n
2 ).

Then, the problem (1.1.9) has no H1
0(Ω) solutions.

By the above result we note here that the existence or not of further correction terms in these inequalities does not

follow from the non-achievement of the best constants in H1
0(Ω).

In our work [Gk] we managed to relax the condition on V− and moreover we found the optimal one. Our result reads

as follows

Theorem 1.1.1. Suppose for some p > n
2 , the potential V ∈ Lp

loc(Ω \ {0}) is such that (1.1.8) holds. We also assume

that V+ ∈ L
n
2 ,∞(Ω) and V− satisfies the condition∫

Ω

|V−|
n
2 X1−n

1 dx < ∞.

Then, problem (1.1.9) has no nontrivial H1(Ω) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,

(1.1.10)
∫

Ω

|V−|
n
2 Xa

1dx < ∞, ∀ a > 1 − n

but ∫
Ω

|V−|
n
2 X1−n

1 dx = ∞,

in which case the problem (1.1.9) has a solution φ ∈ H1(Ω) (see Example 1 in Section 3.1).

Note that, in problem (1.1.9), we have assumed without loss of generality that V has a strong irregularity only at zero,

since otherwise we could apply the same analysis in any such point. Also, notice that our assumption (1.1.7) on V−

implies that V− has milder irregularity than 1
|x|2 near the origin.

Next, setting

u = |x|−
n−2

2 v,

it is not difficult to check that the inequality (1.1.8) is equivalent to

(1.1.11)
∫

Ω

|x|2−n|∇v|2dx ≥ b
∫

Ω

|x|2−nV(x)v2dx,

where the constant b > 0 in (1.1.11) continues to be optimal. By Theorem 1.1.1, the best constant in (1.1.8) can not
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be achieved by some u ∈ H1(Ω). However, Filippas and Tertikas [FT] proved that the best constant b > 0 in (1.1.11)

is achieved for some function v ∈ W1,2
0 (Ω; |x|−n+2). We denote here by W1,2

0 (Ω; |x|−n+2) the completion of C∞0 (Ω) under

the norm ( ∫
Ω

|x|−(n−2)|∇w|2dx +

∫
Ω

|x|−(n−2)|w|2dx
) 1

2

.

We note here that the space W1,2
0 (Ω; |x|−n+2) is slightly larger space than H1

0(Ω) (see [FT]).

In [FT], the authors obtained the following result:

Proposition 1.1.2. Let V satisfy the condition (1.1.7) and let b be the best constant in inequality (1.1.11). Then

inequality (1.1.11) becomes equality for some v ∈ W1,2
0 (Ω; |x|−n+2). That is, there exists a nontrivial function v ∈

W1,2
0 (Ω; |x|−n+2) which solves the corresponding Euler-Lagrange

(1.1.12)
div(|x|−(n−2) ∇v) + |x|−(n−2)bVv = 0 on Ω \ {0}

v 	 0 in Ω.

We note here by above Proposition and Theorem 1.1.1, we have that the minimizer of

b = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx −

(
n−2

2

)2 ∫
Ω

u2

|x|2 dx∫
Ω

Vu2dx
,

belongs to W1,2
0 (Ω; |x|−n+2) but it does not belong to H1

0(Ω).

We next consider the improved Hardy inequalities for n ≥ 3, which are established in [FT]∫
Ω

|∇u|2dx ≥
(n − 2)2

4

∫
Ω

|u|2

|x|2
dx +

1
4

∫
Ω

|u|2

|x|2
X2

1(
|x|
D

)dx, ∀u ∈ H1
0(Ω),

∫
Ω

|∇u|2dx ≥
(n − 2)2

4

∫
Ω

|u|2

|x|2
dx +

1
4

∫
Ω

|u|2

|x|2
X2

1(
|x|
D

)dx

+ C
( ∫

Ω

|u|
2n

n−2

(
X1(
|x|
D

)X1

(
X1(
|x|
D

)
) ) 2(n−1)

n−2

dx
) n−2

n

∀u ∈ H1
0(Ω)(1.1.13)

where the constant 1
4 is optimal.

In [FT], we have again by (1.1.13) that if the non nonnegative potential V satisfies the following condition

(1.1.14)
∫

Ω

|V |
n
2

(
X1(
|x|
D

)X1

(
X1(
|x|
D

)
))1−n

dx < ∞,

then the following inequality is valid for all u ∈ H1
0(Ω)

∫
Ω

|∇u|2dx ≥
(n − 2)2

4

∫
Ω

|u|2

|x|2
dx +

1
4

∫
Ω

|u|2

|x|2
X2

1(
|x|
D

)dx

+ b
∫

Ω

Vu2dx, ∀u ∈ H1
0(Ω),(1.1.15)

where the constant b > 0 is optimal.

Setting

u = |x|−
n−2

2 v,
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then the inequality (1.1.15) becomes equivalent to∫
Ω

|x|−(n−2)|∇v|2dx ≥
1
4

∫
Ω

|v|2

|x|n
X2

1(
|x|
D

)dx

+ b
∫

Ω

V |x|−(n−2)v2dx, ∀v ∈ W1,2
0 (Ω; |x|−(n−2)),(1.1.16)

for the same optimal constant b > 0 as in (1.1.15).

The parallel result to Theorem 1.1.1 is

Theorem 1.1.3. Suppose for some p > n
2 , the potential V ∈ Lp

loc(Ω \ {0}) is such that (1.1.8) holds. We also assume

that V+ ∈ L
n
2 ,∞(Ω) and V− satisfies the condition

∫
Ω

|V−|
n
2

(
X1(
|x|
D

)X1

(
X1(
|x|
D

)
))1−n

dx < ∞

then problem
div(|x|−(n−2) Dv) + 1

4 X2
1

v
|x|n + |x|−(n−2)bVv = 0 on Ω \ {0}

v 	 0 in Ω.

has no nontrivial W1,2(Ω; |x|−n+2) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,

∫
Ω

|V |
n
2

(
X1(
|x|
D

)
)1−n (

X1

(
X1(
|x|
D

)
))a

dx < ∞, ∀a > 1 − n

but ∫
Ω

|V |
n
2

(
X1(
|x|
D

)X1

(
X1(
|x|
D

)
))1−n

dx = ∞,

in which case the problem (1.1.9) has a solution φ ∈ H1(Ω) (see Example 1 in Section 3.2).

The above result can be inducted. Set first

φk(|x|) = |x|−
n−2

2 X−
1
2

1 (
|x|
D

)X−
1
2

2 (
|x|
D

) · · · X−
1
2

k (
|x|
D

),

and φ0(x) = 1

|x|
n−2

2
, where Xk(t) := X1(Xk−1(t)), for k ≥ 2. We next introduce a new function space which is the

appropriate setting in our analysis. We denote by W1,2
0 (Ω; φ2

k−1) the Hilbert space which is the completion of C∞0 (Ω)

under the norm (∫
Ω

φ2
k−1u2dx +

∫
Ω

φ2
k−1|∇u|2dx

) 1
2

.

Then we have

Theorem 1.1.4. Suppose for some p > n
2 the potential V ∈ Lp

loc(Ω \ {0}) is such that (??) holds. We also assume that

V+ ∈ L
n
2 ,∞(Ω) and V− satisfies the condition

∫
Ω

|V−|
n
2 (

k+1∏
i=1

Xi)1−ndx < ∞.



1.2. Distance From The Boundary 7

Then the problem

(1.1.17)
−div(φ2

k−1∇v) = 1
4 X2

k Xk−1 · · · X1
v
|x|n + bVφ2

k−1v, in Ω \ {0}

v 	 0 in Ω,

has no nontrivial W1,2(Ω; φ2
k−1) solution. Moreover the assumptions on the potential V are optimal.

The optimality is meant by the fact that we provide a potential V which satisfies,

∫
B1(0)
|V−|

n
2 (

k∏
i=1

Xi)1−nXa
k+1dx < ∞ ∀a > 1 − n,

but ∫
Ω

|V−|
n
2 (

k+1∏
i=1

Xi)1−ndx = ∞,

in which case the problem (1.1.17) has a solution φ ∈ W1,2(Ω; φ2
k−1) (see Example 2 in Section 3.2).

Let us mentioned that the main tool in proving the above Theorem is the following k-improved Hardy-Sobolev inequal-

ity obtained in [FT]

∫
Ω

|∇u|2dx ≥
(n − 2)2

4

∫
Ω

|u|2

|x|2
dx +

1
4

k∑
i=1

∫
Ω

|u|2

|x|2
X2

1(
|x|
D

)X2
2(
|x|
D

) · · · X2
i (
|x|
D

)dx

+ C
( ∫

Ω

|u|
2n

n−2

(
X1(
|x|
D

)X2(
|x|
D

) · · · Xk+1(
|x|
D

)
) 2(n−1)

n−2

dx
) n−2

n

, ∀u ∈ H1
0(Ω),

where the constant 1
4 is optimal.

1.2 Distance From The Boundary
The Hardy inequality in half space Rn

+ = {(x′, xn) : xn > 0}; n ≥ 2 asserts that∫
Rn

+

|∇u|2dx ≥
1
4

∫
Rn

+

u2

x2
n

dx, ∀u ∈ C∞0 (Rn
+),

where the constant 1
4 is optimal. Note here that xn = d(x) is the distance function in Rn

+. If we now restrict in an open

set Ω with Lipschitz boundary the Hardy inequality reads as∫
Ω

|∇u|2dx ≥ µΩ

∫
Ω

u2

d2 dx, ∀u ∈ C∞0 (Ω),

where the constant µΩ ∈ (0, 1
4 ] (see [MS] and [MMP]). We note here that there exist domains Ω such that µΩ < 1

4 (see

[MMP]). However if the domain Ω is convex then the constant µΩ = 1
4 (see [MS] and [MMP]). Also Davies in [D2]

introduced the weight function

(1.2.18) DΩ(x) =

(
n|Sn−1|−1

∫
Sn−1

1
de(x)2 de

)− 1
2

,

where de(x) := inf{|t| : x + te ∈ Ωc} for e ∈ Sn−1 and he proved for any domain Ω ( Rn

∫
Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

D2
Ω

dx ∀u ∈ C∞0 (Ω).
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The relation between DΩ and the distance function d is

d(x) ≤ DΩ(x) if Ω is convex.

This follows by some elementary geometric considerations.

It is clear that Hardy inequality holds in an open domain Ω with the best constant 1
4 , if and only if we make some

geometric assumption on Ω. But it is not clear if Hardy inequality with best constant 1
4 is valid only for convex do-

main. Indeed Barbatis, Filippas and Tertikas [BFT2] relaxed the assumption of convexity for the domain Ω and they

introduced a global geometric condition on Ω

−∆d ≥ 0.

And they showed that if Ω satisfies the above condition then Hardy inequality is valid for µΩ = 1
4 . We note here that

the above condition is equivalent to the convexity of the domain Ω for n = 2, but it is a much weaker condition than

convexity of Ω for n ≥ 3. Also it has been recently proved that the condition −∆d ≥ 0 is equivalently with the fact that

the mean curvature of the boundary of Ω is non-negative see ([P] and [LLL]).

Brezis and Marcus [BM] have established an improved version of Hardy inequality. They showed that for an open,

convex and bounded domain Ω with smooth boundary, there exists a constant

(1.2.19) λ(Ω) ≥
1

4diam2(Ω)

such that

(1.2.20)
∫

Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

d2 dx + λ(Ω)
∫

Ω

u2dx, ∀u ∈ C∞0 (Ω).

In this paper Brezis and Marcus asked whether the diameter of Ω in (1.2.19) can be replaced by an expression depending

on |Ω| := volΩ, namely, whether λ(Ω) ≥ c|Ω|−
2
n with some c = c(n) > 0. The answer was given by M. Hoffmann-

Ostenhof, T. Hoffmann-Ostenhof and Laptev [HHL]. They showed that

λ(Ω) ≥
c(n)

|Ω|
2
n

; c(n) =
n

n−2
n |Sn−1|

2
n

4
.

In particular if n = 2 then c(2) = π
2 .

Filippas, Maz’ya and Tertikas [FMaT2] proved inequality (1.2.20) for an open convex domain with smooth boundary

which has finite inner radius. In particular, they showed that (1.2.20) is valid for some constant λ(Ω). Also they showed

that there exist c1(n) > 0 and c2(n) > 0 such that

c1(n)
1

supx∈Ω d2(x)
≤ λ(Ω) ≤ c2(n)

1
supx∈Ω d2(x)

.

The question here is, if there exist domains Ω which satisfies a geometric assumption (e.g. convexity) such that we can

add a Sobolev term with critical exponent in the right hand side of the Hardy inequality. For instance in half space Rn
+;

n ≥ 3, Maz’ya [Ma] proved the Hardy-Sobolev inequality

∫
Rn

+

|∇u|2dx ≥
1
4

∫
Rn

+

u2

x2
n

dx + Cn

( ∫
Rn

+

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Rn
+),

for some constant Cn > 0 which depends only on n.

Filippas, Maz’ya and Tertikas [FMaT1] managed to prove this amazing result for a family of open sets. More precisely,
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they showed that if Ω is an open domain with finite inner radius and it satisfies −∆d ≥ 0. Then there exist a constant

CΩ such that

(1.2.21)
∫

Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

d2 dx + CΩ

( ∫
Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω),

(see Theorem 3.4 of [FMaT1]). Recently in [FL] the authors used the weight function DΩ(x) (1.2.18) to prove that the

constant CΩ is independent on Ω, if Ω is convex. In particular, they proved that there exist a constant Kn > 0 such that

∫
Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

D2
Ω

dx + Kn

( ∫
Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω).

We recall here again that d(x) ≤ DΩ(x) if Ω is convex.

It is clear here that the Hardy and Hardy-Sobolev inequalities are valid for convex domains or for domains satisfying

−∆d ≥ 0 and having finite inner radius. But it is not clear that these geometric conditions on domains are necessary.

For instance there is no answer if the Hardy and Hardy-Sobolev inequalities hold in Ω = Bc
1(0); B1(0) is the unit ball

with center at the origin.

In this thesis we prove the analogue inequalities for domains having different geometric conditions from them which

we have presented above. In particular we deal with two different types of such domains.

Firstly, we deal with exterior domains, i.e. complements of smooth compact domains. For our purposes here, smooth

means C2 and we consider exterior domains not containing the origin, for instance Bc
1(0). We note here that an exterior

domain Ω can not satisfy the condition −∆d ≥ 0. Thus we need a new condition on Ω. For this we introduce the

following

(1.2.22) − ∆d(x) + (n − 1)
∇d(x) · x
|x|2

≥ 0

Note that this condition is satisfied in case Ω = Bc
1(0).

First we state the Hardy inequality under condition (1.2.22)

Theorem 1.2.1. Let Ω be an exterior domain in Rn (n ≥ 3) not containing the origin and satisfying condition (1.2.22).

Then ∫
Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

d2 dx, ∀ u ∈ C∞0 (Ω).

The constant 1
4 is sharp.

We note here that the above inequality for n = 2 does not hold, not even with some positive constant in front of the

integral term of the right hand side (see example 2 in section 4.1.2). Intuitively, this happens because for large values

of |x| the distance function to the boundary behaves like the distance to the origin, and thus by (1.1.1) it fails.

Let us now state the Hardy-Sobolev inequalities which we will prove in this thesis.

Theorem 1.2.2. Let n ≥ 4 and Ω be an exterior domain not containing the origin and satisfying condition (1.2.22).

Then the following inequality is valid.

(1.2.23)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω),

where the constant C > 0 depends only on Ω and the dimension n.

We stress again that the domains referred in the above theorem are of infinite inner radius.
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The case n = 3 is different, as we can see from the following Theorem.

Theorem 1.2.3. Let n = 3 and Ω be an exterior domain not containing the origin and satisfying condition (1.2.22)

with strict inequality i.e.

(1.2.24) − ∆d(x) + 2
∇d(x) · x
|x|2

� 0.

Then the following inequality is valid.

(1.2.25)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

X4(
|x|
D

)|u|6dx
) 1

3

, ∀ u ∈ C∞c (Ω),

where X(t) = (1 + ln t)−1, 0 < D < inf{|x| : x ∈ ∂Ω} and the constant C > 0 depends only on Ω. Moreover, the power

4 on X can not be replaced by a smaller power.

We note here that the condition (1.2.24) is necessary, since in the case where Ω = Bc
1(0), the inequality (1.2.25) does

not hold (see Example 3 in Section 4.1.2).

Let us now assume that Ω is an open bounded domain with smooth boundary. Filippas, Maz’ya and Tertikas [FMaT1]

showed the following inequality

(1.2.26)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + M
∫

Ω

u2dx ≥ C
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω),

where the constant C depends only on n while M depends on n and Ω.

In this thesis we prove an analogue inequality for the exterior domains. Again the inequalities are different in cases

n ≥ 4 and n = 3 as we can see in the following Theorems.

Theorem 1.2.4. Let n ≥ 4, σ > 0 and Ω be an exterior domain not containing the origin. Then there exist constants

C(Ω, n) and C′(Ω, n, σ) such that the following inequality is valid,

(1.2.27)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω)

where σ > 0.

Theorem 1.2.5. Let n = 3, σ > 0 and Ω be an exterior domain not containing the origin. Then there exist constants

C(Ω) and C′(Ω, σ) such that

(1.2.28)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

X4(
|x|
ρ

)u6dx
) 1

3

, ∀u ∈ C∞c (Ω),

where X(t) = (1 + ln t)−1, ρ = inf{|x| : x ∈ ∂Ω}. Moreover, the power 4 on X can not be replaced by a smaller power.

Note again that the domains considered in the above Theorems are of infinite inner radius.

Next, we deal with domains above the graph of a C1,1 function. More precisely, let Γ : Rn−1 → R satisfying

the conditions |∇Γ| < λ and Γ ∈ C1,1(Rn−1). We then call the set

Ω = {(x′, xn) ∈ Rn : xn > Γ(x′)},
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a domain above the graph of a C1,1 function. Note that again such domains have infinite inner radius. An example of

such domain is the half space Rn
+ for Γ(x′) = 0. As we noted above, the Hardy-Sobolev inequality is valid in the half

space for n = 3. This fact leads us to consider domains above the graph of a C1,1 function as a separate case. Another

reason is that the distance function satisfies

1
1 + λ

(xn − Γ(x′)) ≤ d(x) ≤ (xn − Γ(x′)),

that is, the distance function does not behave as distance to a point as xn goes to infinity.

Thus, we have

Theorem 1.2.6. Let n ≥ 3 and Ω be a domain above the graph of C1,1 function which satisfies −∆d ≥ 0 in the sense of

distributions. Then the following inequality is valid

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C(n, λ)
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω).

Observe that the constant in front of the critical Sobolev term depends only on the dimension n and λ.

1.3 Harnack Inequalities and Heat Kernels Estimates
Harnack inequalities have been extremely useful in the study of solutions of elliptic and parabolic equations. They

are used to prove Hölder continuity of solutions, strong maximum principles, Liouville properties, as well as sharp

two-sided heat kernel estimates. In particular in parabolic problems, Harnack inequalities are equivalent to sharp two•

sided heat kernel estimates. See for instance the books [Gr1], [Z1] and [SC2].

Consider the following parabolic problem

ut = ∆u in Ω × (0,T ](1.3.29)

Then, we have the following interior parabolic Harnack inequality,

Proposition 1.3.1 ([Mo]). Let u ≥ 0 be a solution of (1.3.29) and Ω′ be a convex subdomain of Ω, such that d =

dist(Ω′, ∂Ω) > 0. Then, there exists a positive constant C, depending only on n such that

u(y, s) ≤ u(x, t) exp
[
C
(
|x − y|2

t − s
+

t − s
k

+ 1
)]
,

for all x, y ∈ Ω′ and all s, t satisfying 0 < s < t ≤ T, where k = min(1, s, d2).

As we can note in the following proposition, the boundary Harnack inequality is different than interior Harnack in-

equality

Proposition 1.3.2 ([S]). Let Q = Ω × (0,T ] be a Lipschitz cylinder and Γ a compact subset of ∂pQ = (∂Ω × [0,T ]) ∪

(Ω × {0}). Suppose Q′ = Ω′ × (s, t], 0 < s < t < T, is a subcylinder of Q such that ∂pQ ∩ ∂pQ′ is compactly contained

in Γ and (X0,T0) is a fixed point in Q, with T0 > t.

Then, for every nonnegative weak solution of ut = ∆u in Q vanishing on Γ, we have

u(x, t) ≤ Cu(x0,T0), for all (x, t) ∈ Q′,

where C is a constant depending only on T0 − t and ∂Ω. Moreover s can be chosen equal to zero if Γ ∩ (Ω × {0}) , ∅.
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A reason that we have not a closed formula for these two cases, is that in the proofs of the above propositions, the

authors have not used the properties of the minimizer of

(1.3.30) λ1 = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2dx∫

Ω
u2dx

.

It is well know that the minimizer φ ∈ H1
0(Ω) behaves as the distance function d(x) near the boundary of Ω. This fact

was used by [Z2] to prove the sharp two side heat kernel estimate for this problem, that is:

Let u be a solution of

ut = ∆u in Ω × (0,T ]

u(x, t) = 0 on ∂Ω × (0,T ]

u(x, 0) = u0 in Ω,(1.3.31)

Then there exists a heat kernel h(t, x, y) such that (see [D1])

u(t, x) =

∫
Ω

h(t, x, y)u0(y)dy,

and h(t, x, y) satisfies

ht = ∆xh = ∆yh in Ω × (0,∞)

h(t, x, y) = 0 if (x, t) ∈ ∂Ω × (0,∞) or (y, t) ∈ ∂Ω × (0,∞)

h(0, x, y) = δx,y in Ω.(1.3.32)

We then have the two side heat kernels estimates

Proposition 1.3.3 ([Z2]). Let Ω be an open set with smooth boundary and h(t, x, y) be the respective heat kernel of the

problem (1.3.32). Then there exist positive constants C1 and C2 such that

1
C1

( d(x)
√

t ∧ 1
∧ 1

)( d(y)
√

t ∧ 1
∧ 1

) 1
t

n
2

exp(−
|x − y|2

C2t
)e−λ1t

(1.3.33) ≤ h(t, x, y) ≤ C1

( d(x)
√

t ∧ 1
∧ 1

)( d(y)
√

t ∧ 1
∧ 1

) 1
t

n
2

exp(−
C2|x − y|2

t
)e−λ1t, ∀ x, y ∈ Ω.

We note here again that the usage of the eigenfunction φ is crucial. Also we note that the asymptotic behavior of the

heat kernel is different for small time than it is for large time.

Using of a minimizer problem like (1.3.30), we can prove boundary Harnack type inequality and then two side heat

kernel estimates for parabolic problems with singular potential.

More precisely, let n ≥ 3 and 0 ∈ Ω be an open set with smooth boundary. We consider the following parabolic problem

ut = ∆u +
(n − 2)2

4
u
|x|2

in Ω × (0,T ]

u = 0 on ∂Ω(1.3.34)

u(0, x) = u0(x) in Ω.

We note here that in order to investigate the properties of the solutions of the above problem, we need to investigate the
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following minimizing problem

(1.3.35) λ1 = inf
u∈C∞c (Ω)

∫
Ω
|∇u|2dx − (n−2)2

4

∫
Ω

u2

|x|2∫
Ω

u2dx
.

where λ1 > 0 (see [BV]).

It is well known that (see e.g [DD]) there exists a ground state function φ ∈ H1
loc(Ω\{0}) which solves the corresponding

Euler-Lagrange of (1.3.35)

−∆φ −
(n − 2)2

4
φ

|x|2
= λ1φ, in Ω, φ(x) = 0, on ∂Ω.

in the weak sense. Also, due to the results in Lemma 7 in [DD] and using Theorem 7.1 in [DS] on one hand, and elliptic

regularity on the other, there exist two positive constants C1, C2 such that

C1d(x)|x|−
n−2

2 ≤ φ(x) ≤ C2d(x)|x|−
n−2

2 .

The authors in [FMoT3] used this fact and they proved the boundary Harnack type inequality

Proposition 1.3.4. Let u be a non-negative solution of (1.3.34). Then there exist a positive constant A such that the

following estimate is valid for all x, y ∈ Ω and all 0 < s < t < T.

u(s, y)
φ(y)

≤
u(t, x)
φ(x)

exp
(
A

(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

))
,

where the constant R > 0 is small enough and depends only on ∂Ω.

(In particular this result is a corollary of Theorem 2.11 in [FMoT3]).

By the boundary Harnack type inequality we have the following two side heat kernel estimates for small times

Proposition 1.3.5 ([FMoT3]). Let n ≥ 3 and 0 ∈ Ω be an open bounded domain with smooth boundary. Let h(t, x, y)

be the respective heat kernel of the problem (1.3.34). Then there exist positive constants C1, C2, A1, A2 and T > 0

depending on Ω such that

C1 min
(
(|x| +

√
t)

n−2
2 (|y| +

√
t)

n−2
2 ,

d(x)d(y)
t

)
(|x||y|)

2−n
2 t−

n
2 exp(−A1

|x − y|2

t
) ≤

≤ h(t, x, y) ≤

≤ C2 min
(
(|x| +

√
t)

n−2
2 (|y| +

√
t)

n−2
2 ,

d(x)d(y)
t

)
(|x||y|)

2−n
2 t−

n
2 exp(−A2

|x − y|2

t
),

for all x, y ∈ Ω and t ≤ T.

Concerning the large time asymptotic we have:

Proposition 1.3.6 ([FMoT3]). Let n ≥ 3 and 0 ∈ Ω be an open bounded domain with smooth boundary. Let h(t, x, y)

be the respective heat kernel of the problem (1.3.34). Then there exist positive constants C1, C2 and t0 > 0 depending

on Ω such that

C1φ(x)φ(y)e−λ1t ≤ h(t, x, y) ≤ C2φ(x)φ(y)e−λ1t,

for all x, y ∈ Ω and t ≥ t0.
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Another parabolic problem which is widely investigated, is

ut = ∆u +
1
4

u
d2 in Ω × (0,T ]

u = 0 on ∂Ω(1.3.36)

u(0, x) = u0(x) in Ω.

As we refer above, we need to consider the following minimizing problem

(1.3.37) λ1 = inf
u∈C∞c (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2∫
Ω

u2dx
,

where λ1 ∈ R (see [FMaT1]). It is well known that there exists a ground state φ ∈ H1
loc(Ω) which solves the correspond-

ing Euler-Lagrange of (1.3.37)

−∆φ −
1
4
φ

d2 = λ1φ, in Ω, φ(x) = 0, on ∂Ω,

in the weak sense. Also there exist positive constants C1 and C2 such that

C1d
1
2 (x) ≤ φ(x) ≤ C2d

1
2 (x),

near to the boundary (see [DD]). Filippas Moschini and Tertikas [FMoT3] used this fact to prove the following bound-

ary Harnack type inequality

Proposition 1.3.7. Let u be a non-negative solution of (1.3.34). Then there exist a constant A such that the following

estimate is valid for all x, y ∈ Ω and all 0 < s < t < T.

u(s, y)
φ(y)

≤
u(t, x)
φ(x)

exp
(
A

(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

))
,

where the constant R > 0 is small enough and depends only on ∂Ω.

(In particular this result is a corollary of Theorem 2.11 in [FMoT3])

Also they proved the following sharp estimates for the heat kernel of problem (1.3.36)

Proposition 1.3.8. Let Ω be an open bounded set with smooth boundary and h(t, x, y) be the respective heat kernel of

the problem (1.3.36). Then there exist positive constant C1, C2, A1, A2, and t0 depend on Ω such that

C1

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A1

|x − y|2

t

)

≤ h(t, x, y) ≤ C2

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A2

|x − y|2

t

)
,

for any x, y ∈ Ω and t ≤ to

Also the authors in [FMoT3] proved for convex domains and large enough t the following Proposition

Proposition 1.3.9. Let Ω be an open bounded set with smooth boundary which satisfies −∆d ≥ 0 and h(t, x, y) be the

respective heat kernel of the problem (1.3.36). Then there exist constant C1 > 0 such that

e−λ1t 1
C1

d
1
2 (x)d

1
2 (y) ≤ h(t, x, y) ≤ e−λ1tC1d

1
2 (x)d

1
2 (y).
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for any x, y ∈ Ω and t ≤ t0.

We note here that the eigenvalue λ1 of (1.3.37) is positive since Ω is convex (see [BM]).

In this thesis we prove boundary Harnack type inequalities for the solutions of problem (1.3.36) where Ω is an ex-

terior domain not containing the origin. We also prove two side estimates for the heat kernel for small time. We remind

here that an exterior domain is the complement of a smooth compact domain. For our purposes here, smooth means C2

and we consider exterior domains not containing the origin, for instance Bc
1(0).

We note here that the problem (1.3.36) in exterior domains is a combination of (1.3.36) and (1.3.34) in bounded do-

mains. The reason is that for large values of |x| the distance function to the boundary behaves like the distance to the

origin.

Also since the exterior domain is unbounded we need to investigate the following minimizing problem

(1.3.38) λ1 = inf
u∈C∞c (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2∫
Ω

u2

1+d2+σ

,

where σ > 0.

We prove in this thesis the following theorem

Theorem 1.3.10. Let n ≥ 3 and Ω be an exterior open set with smooth boundary not containing the origin. Then the

constant λ1 of 1.3.38 is finite. Also there exist a ground state φ ∈ H1
loc(Ω) of corresponding Euler-Lagrange of (1.3.38)

i.e. it is a weak solution of

−∆φ −
1
4
φ

d2 = λ1
φ

1 + d2+σ
in Ω, φ = 0 on ∂Ω.

Finally there exist positive constants C1, C2 and an =
(n−1)

2 +

√
(n−2)2

4 − 1
4 such that

C1
d

1
2 (x)
|x|an

≤ φ(x) ≤ C2
d

1
2 (x)
|x|an

,

for any x ∈ Ω.

Clearly this problem is a combination of the problems (1.3.36) and (1.3.34) in bounded domains.

Using the above theorem and the program initiated by A. Grigor’yan and L. Saloff-Coste (see [Gr4], [GSC], [Gr2]

and [Gr3]) in non-compact Riemannian manifolds (see also [SC1] for a nice survey), we prove the following boundary

Harnack type inequality

Theorem 1.3.11. Let u be a non-negative solution of (1.3.36). Then there exist constant A such that the following

estimate is valid for all x, y ∈ Ω and all 0 < s < t < T.

u(s, y)
φ(y)

≤
u(t, x)
φ(x)

exp
(
A

(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

))
,

where the constant R > 0 is small enough and depends only on ∂Ω.

With this theorem at hand, we are able to obtain two side estimates for the heat kernel h(t, x, y) of the problem (1.3.36)

in an exterior domain.

Theorem 1.3.12. Let Ω be an exterior open set with smooth boundary not containing the origin and let h(t, x, y) be the

respective heat kernel of the problem (1.3.36). Then there exist positive constant C1, C2, A1, A2, and t0 depend on Ω



16 1. Overview

such that

C1

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A1

|x − y|2

t

)

≤ h(t, x, y) ≤ C2

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A2

|x − y|2

t

)
,

for any x, y ∈ Ω and t ≤ t0.



Chapter 2

Some Basic Methods

In this chapter we present some known results and we give some proofs of them for convenience to the reader of this

thesis. Especially, in section 2.1 we prove the inequality 1.1.6 which proof is in [FT]. Finally, in section 2.2 we present

a simple elliptic problem and we explain the Moser’s iteration of this problem.

2.1 Hardy and Hardy-Sobolev Inequalities in Bounded Domain
In chapter 4 we prove Hardy and Hardy-Sobolev type inequalities in unbounded domain. Thus in this section we would

like to present some proofs in bounded domains which will help familiarize the reader with the proofs of these type

inequalities.

First we prove the following Proposition,

Proposition 2.1.1 ([FT]). We assume that, n ≥ 3 and Ω is an open bounded domain which contains the origin. Then

the following inequality is valid

(2.1.1)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + C

( ∫
Ω

X
2(n−1)

n−2 (
|x|
D

)|u|
2n

n−2 dx
) n−2

n

, ∀ u ∈ C∞0 (Ω),

where X(t) = (1 − ln t)−1 and D = supx∈Ω |x|.

To prove Theorem 2.1.1 we need the next Lemma, the proof of which can be found in [Ma].

Lemma 2.1.2. Let A(r), B(r) be nonnegative functions. Such that 1/A(r), B(r) are integrable in (r,∞) and (0, r),

respectively, for all positive r < ∞. Then, for q ≥ 2 the following inequality

(2.1.2)
[ ∫ s

0
B(t)|u(t)|qdt

] 1
q

≤ C
[ ∫ s

0
A(t)|u′(t)|2dt

] 1
2

,

is valid for all u ∈ C1[0, s] such that u(s) = 0 (or vanish near infinity, if s = ∞), if and only if

(2.1.3) K := sup
r∈(0,s)

[ ∫ r

0
B(t)dt

] 1
q
[ ∫ s

r
(A(t))−1dt

] 1
2

< ∞.

The best constant in (2.1.3) satisfies the following inequality

(2.1.4) K ≤ C ≤ K
( q
q − 1

) 1
2

q
1
q .

17
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proof of Theorem 2.1.1: Suppose first that Ω = B1(0). Following [VZ] we decompose w into spherical harmonics

(since u ∈ C∞0 (BD(0))) to get

u(x) =

∞∑
m=0

um(r) fm(σ),

where fm are orthogonal in L2(S n−1) normalized by 1
nwn

∫
S n−1 fm(σ) fn(σ)dS = δmn. In particular f0(σ) = 1 and the first

term in the above decomposition is given by

u0(r) =
1

nwnrn−1

∫
∂Br

u(x)dS x.

The fm’s are eigenfunctions of the Laplace-Beltrami operator (∇σ) with corresponding eigenvalues cm = m(n − 2 + m),

m ≥ 0. An easy calculation shows that,

(2.1.5)
∫

B1

|∇u|2dx =

∞∑
m=0

∫
B1

|∇um|
2dx +

∞∑
m=0

cm

∫
B1

u2
m

|x|2
dx.

We next estimate the nonradial part using the inequality∫
B1

|∇um|
2dx +

(
cm −

n − 2
4

) ∫
B1

u2
m

|x|2
dx ≥

cm

cm +
(n−2)2

4

(∫
B1

|∇um|
2dx + cm

∫
B1

u2
m

|x|2
dx

)
, m ≥ 1.

Taking into account that cm ≥ N − 1 for m ≥ 1

∞∑
m=1

∫
B1

|∇um|
2dx +

∞∑
m=1

(
cm −

n − 2
4

) ∫
B1

u2
m

|x|2
dx ≥

4(n − 1)
n2

( ∫
B1

|∇(u − u0)|2dx +

∫
B1

|u − u0|
2

|x|2
dx

)
≥ C

( ∫
B1

X
2(n−1)

n−2 (|x|)|u − u0|
2n

n−2 dx
) n−2

n

,(2.1.6)

where in the last inequality we have used the Sobolev inequality and the fact that 0 ≤ X ≤ 1. Now, setting u0 = |x|−
n−2

2 w

we can easily check that∫
Ω

|∇u|2dx −
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx =

∫
Ω

|∇w|2

|x|n−2 dx +
1
2

∫
Ω

∇(|x|−(n−2))∇w2dx.(2.1.7)

We next show that the last integral above is equal to zero. Let Bε = {x : |x| < ε} and S ε = {x : |x| = ε}. We then write∫
Ω

∇(|x|−(n−2))∇w2dx =

∫
Bε
∇(|x|−(n−2))∇w2dx +

∫
Ω\Bε
∇(|x|−(n−2))∇w2dx.

The integrand in the above integrals is easily checked to be an L1 function and therefore the first integral on the

right-hand side tends to zero as ε → 0. Concerning the second-integral, integrating by parts and using the fact that

∆|x|−(n−2) = 0 we end up with∫
Ω\Bε
∇(|x|−(n−2))∇w2dx = (n − 2)ε−n+1

∫
S ε

w2dS x =
n − 2
ε

∫
S ε

u2
0dS x(2.1.8)

→ 0 as ε→ 0,

since u0 ∈ C∞0 (Ω).
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It then follows that the last term in (2.1.7) is zero, and the following identity holds:

(2.1.9)
∫

Ω

|∇u0|
2dx −

(n − 2
2

)2 ∫
Ω

u2
0

|x|2
dx =

∫
Ω

|∇w|2

|x|n−2 dx.

Using (2.1.9), inequality (2.1.1) becomes equivalent to

(2.1.10)
∫

Ω

|∇w|2

|x|n−2 dx ≥ C
( ∫

Ω

|w|
2n

n−2

|x|n
X(
|x|
D

)
2(n−1)

n−2 dx
) n−2

n

.

Now since w is a radially symmetric function, inequality (2.1.10) is equivalent to

∫ 1

0
r|wr |

2dr ≥ C
( ∫ 1

0

|w|
2n

n−2

r
X(

r
D

)
2(n−1)

n−2 dr
) n−2

n

,

where D = supx∈∂Ω |x|. We note that the last inequality is valid by Lemma 2.1.2 for A(r) = r, B(r) =
X

2(n−1)
n−2 ( r

D )
r and

q = 2n
n−2 . Thus by the last inequality and inequality (2.1.6) the result follows in the case where the Ω is the unit ball.

Consider now the case where Ω is a bounded domain. Then, for some R > 0 we have that Ω ⊂ BR. Since (2.1.1) is true

for any u ∈ C∞0 (BR) it is true in particular for every u ∈ C∞0 (Ω) �

Finally, in the following proposition we would like to show how someone can use a geometric condition for a domain

to prove the Hardy inequality.

Proposition 2.1.3 ([BFT1]). Let n ≥ 2. We assume that Ω is an open domain. We also assume that Ω satisfies −∆d ≥ 0

in the sense of distributions. Then the following Hardy inequality is valid

(2.1.11)
∫

Ω

|∇u|2dx ≥
1
4

∫
Ω

u2

d2 dx, ∀u ∈ C∞0 (Ω),

where the constant 1
4 is optimal.

proof: We set u = d
1
2 v, then by straightforward calculation we have∫

Ω

|∇u|2dx =

∫
Ω

d|∇v|2dx +
1
4

∫
Ω

v2|∇d|2

d
dx +

1
2

∫
Ω

∇d · ∇v2dx.

Now since |∇d| = 1 a.e and
∫

Ω
∇d · ∇v2dx = −

∫
Ω

∆dv2dx ≥ 0, we have the desired result. �

2.2 The Moser Iteration in a Warm up Problem

In this thesis, Moser’s iteration technique plays a fundamental role. For this reason we present here the main ideas of

this technique in a warm up problem that we took from L. Saloff-Coste [SC1]. As we will see in a moment, it relies on

a certain Sobolev type inequality.

We consider the eigenvalue problem

− ∆u = λu in Ω

u = 0 on ∂Ω,(2.2.12)
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where Ω is an open bounded set. Consider also a solution u ∈ H1
0(Ω) in the weak sense i.e. u satisfies

(2.2.13)
∫

Ω

∇u∇vdx = λ

∫
Ω

uvdx, ∀v ∈ H1
0(Ω).

We say that λ is an eigenvalue of −∆ provided, there exists a non-trivial solution u ∈ H1
0(Ω) of (2.2.13).

It is well known that (see [E]) that the set of eigenvalues is countable. Also we have

0 < λ1 ≤ λ2 ≤ ...

and limk→∞ λk = ∞. In addition, there exists an orthonormal basis {φk}
∞
k=1 of L2(Ω) where 0 < φk ∈ H1

0(Ω) is an

eigenfunction corresponding to λk :

− ∆φk = λkφk in Ω

φk = 0 on ∂Ω,(2.2.14)

for k = 1, 2, ... Finally, we have by standard elliptic regularity that, φk ∈ C∞(Ω) and φk is bounded for any k = 1, 2, ...

(see [E]). The main goal is to prove the following upper bound

Proposition 2.2.1. Let n ≥ 1 and let φk be an eigenfunction corresponding to λk of problem 2.2.14, then there exist a

positive constant An such that

(2.2.15) sup
x∈Ω

φ2
k(x) ≤ Aνλ

ν
2
k

∫
Ω

|φk |
2dx,

To prove the upper bound (2.2.15), it is suffices to use only the following Sobolev type inequality which we call

Moser inequality.

Proposition 2.2.2. Moser Inequality. Let n ≥ 1. Then, there exists a positive constant Cn, depending only on ν such

that

(2.2.16)
∫
Rn
| f |2(1+ 2

n )dx ≤ Cn

∫
Rn
|∇ f |2dx

(∫
Rn
| f |2dx

) 2
n

, ∀ f ∈ C∞0 (Rn).

proof: For the proof of proposition we need to use three cases.

First case n = 1

Since f ∈ C∞0 (R), we have

f 2(x) = 2
∫ x

−∞

f ′(y) f (y)dy ≤ 2
(∫

R

| f ′(y)|2dy
) 1

2
(∫

R

| f (y)|2dy
) 1

2

, ∀ x ∈ R⇒

supx∈R f 4(x) ≤ 4
(∫

R

| f ′(y)|2dy
) (∫

R

| f |2(y)dy
)
.

Thus by above inequality we have

∫
R

| f |2(1+2)dx ≤ 4
(∫

R

| f ′(y)|2dy
) (∫

R

| f (y)|2dy
)2

,

which is the desired result for n = 1.

Second case n = 2
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First, we recall the following inequality

∫
Rn
| f |

n
n−1 dx ≤ S n

(∫
Rn
|∇u|dx

) n
n−1

, ∀ f ∈ C∞0 (Rn),

where S n = nπ
1
2

(
Γ(1 + n

2 )
)− 1

n (see [Ma]). Then by above inequality we have for n = 2

∫
R2
| f |2(1+1)dx ≤ 2S n

(∫
R2
|∇ f || f |dx

)2

≤ 2S n

∫
R2
|∇ f |2dx

∫
R2
| f |2dx,

which is the desired result for n = 2.

Third case n ≥ 3.

We recall the classical Sobolev inequality

(2.2.17)
(∫

Rn
| f |

2n
n−2

) n−2
n

≤ Cn

∫
Rn
|∇ f |2dx, ∀ f ∈ H1

0(Rn),

By Hölder’s inequality we have for any f ∈ C∞0 (Rn)

∫
Rn
| f |2(1+ 2

n )dx =

∫
Rn
| f |2| f |

4
n dx ≤

(∫
Rn
| f |

2n
n−2

) n−2
n

(∫
Rn
| f |2dx

) 2
n

.

Now by the last inequality and classical Sobolev inequality (2.2.17) we have the Nash inequality

∫
Rn
| f |2(1+ 2

n )dx ≤ Cn

∫
Rn
|∇ f |2dx

(∫
Rn
| f |2dx

) 2
n

.

�

We are ready now to prove the upper bound (2.2.15).

proof of Proposition 2.2.1: For 1 ≤ p < ∞ we take v = |φk |
2p−2φk in (2.2.13). Then by straightforward calculations

we have

(2.2.18) λk

∫
Ω

|φk |
2pdx = (2p − 1)

∫
Ω

|φk |
2p−2|∇φk |

2dx =
2p − 1

p2

∫
Ω

|∇|φk |
p|2dx,

Setting f = |φk |
p in (2.2.16), together with (2.2.18) we obtain

∫
Ω

|φk |
2p(1+ 2

n )dx ≤ Cn pλk

(∫
Ω

|φk |
2pdx

)1+ 2
n

.

Finally set in the last inequality pi =
(
1 + 2

n

)i
to get

∫
Ω

|φk |
2pi+1 dx ≤

(
1 +

2
n

)i+(i−1)p1

(Cnλk)1+p1

(∫
Ω

|φk |
2pi−1 dx

)p2

≤ · · · ≤ (Cnλk)
∑i

j=0 p j

(
1 +

2
n

)∑i
j=0(i− j)p j

(∫
Ω

φ2
k

)pi+1

⇒(∫
Ω

|φk |
2pi+1 dx

) 1
pi+1

≤ (Cnλk)
∑i+1

j=1
1
p j

(
1 +

2
n

)∑i+1
j=1( j−1) 1

p j
∫

Ω

φ2
kdx.

Note that
∑∞

j=1( j − 1) 1
p j
< ∞,

∑∞
j=1

1
p j

= n
2 and

(∫
Ω
|φk |

2pi+1 dx
) 1

pi+1 → supx∈Ω φ
2
k , as i → ∞. The desired conclusion
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(2.2.15) follows. �



Chapter 3

Existence and Nonexistence of Energy
Solutions

Let Ω ⊂ IRn be an open bounded domain that contains the origin. In this chapter we find conditions on the potential V

which ensure the nonexistence of positive solutions for linear elliptic problems with Hardy-type potentials. Especially,

in section 3.1 we prove the nonexistence of nontrivial solutions in H1(Ω) for the equation

(3.0.1)
−∆u =

(n−2)2

4
u
|x|2 + bVu, in Ω \ {0}

u 	 0 in Ω.

We denote here by H1(Ω) the Sobolev space which consists of all functions u : Ω→ R such that, ∇u exists in the weak

sense and

||u||2H1(Ω) =

∫
Ω

|∇u|2dx +

∫
Ω

u2dx < ∞.

The results depend on an integral assumption on the potential V∫
Ω

|V−|
n
2 X1−n

1 (
|x|
D

)dx < ∞,

where X1(t) = (1 − ln t)−1. We also give an example establishing that this integral assumption on V is optimal.

In section 3.2, we prove the nonexistence of nontrivial solutions in W1,2(Ω; φk−1) for the equation

(3.0.2)
−div(φ2

k−1Dv) = 1
4 X2

k Xk−1 · · · X1
v
|x|n + Vφ2

k−1v, in Ω \ {0}

v 	 0 in Ω.

We denote here by W1(Ω; φk−1) the space which consists of all functions u : Ω → R such that, ∇u exists in the weak

sense and ∫
Ω

φ2
k−1u2dx +

∫
Ω

φ2
k−1|Du|2dx < ∞,

where

(3.0.3) φk(|x|) = |x|−
n−2

2 X−
1
2

1 (
|x|
D

)X−
1
2

2 (
|x|
D

) · · · X−
1
2

k (
|x|
D

),

X1(t) = (1 − ln t)−1, D = supx∈Ω |x|, and Xk(t) := X1(Xk−1(t)), for k ≥ 2. Also we set φ0 = 1
|x|n−2 . The results depend on

23
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an integral assumption on the potential V

(3.0.4)
∫

Ω

|V−|
n
2 (

k+1∏
i=1

Xi)1−ndx < ∞.

We also give an example establishing that this integral assumption on V is optimal.

3.1 Nonexistence H1(Ω) solutions
In this section we suppose that n ≥ 3 and Ω is an open bounded domain which contains the origin. Also we recall the

following inequality in [FT]

(3.1.5)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + C

( ∫
Ω

X
2(n−1)

n−2
1 (

|x|
D

)|u|
2n

n−2 dx
) n−2

n

, ∀ u ∈ C∞0 (Ω),

where X1(t) = (1− ln t)−1 and D = supx∈Ω |x|. Now we consider a potential V ∈ Lp
loc(Ω) for p > n

2 that has the following

properties:

i) there exists b > 0 such that:

(3.1.6)
∫

Ω

|∇u|2dx ≥
(n − 2

2

)2 ∫
Ω

u2

|x|2
dx + b

∫
Ω

Vu2dx, ∀ u ∈ C∞0 (Ω).

ii) V+ ∈ L
n
2 ,∞(Ω) where we denote here by L

n
2 ,∞(Ω) Lorentz space with norm

||u||L n
2 ,∞(Ω) = sup

s>0
(s|{x ∈ Ω : |u| > s}|

n
2 ),

which is equivalent to the semi-norm

||u||∗
L

n
2 ,∞(Ω)

= sup
E⊂Ω

|E|−1+ 2
n

∫
E
|u|dx

iii) and V− satisfies the following condition

(3.1.7)
∫

Ω

|V−|
n
2 X1−n

1 (
|x|
D

)dx < ∞.

We next suppose that the constant b > 0 in (3.1.6) is optimal. Our main question is whether the best constant b > 0 in

(3.1.6) is achieved for some function u ∈ H1
0(Ω), or equivalently whether the corresponding Euler-Lagrange equation

(3.1.8)
−∆u =

(n−2)2

4
u
|x|2 + bVu, in Ω \ {0}

u 	 0 in Ω,

has H1(Ω) solutions. The answer is given in the following Theorem

Theorem 3.1.1. Suppose for some p > n
2 , the potential V ∈ Lp

loc(Ω \ {0}) is such that (3.1.6) holds. We also assume

that V+ ∈ L
n
2 ,∞(Ω) and V− satisfies the condition (3.1.7). Then, problem (3.1.8) has no H1(Ω) solutions.

Note that, in problem (3.1.8), the assumptions on V is optimal. Particularly in the next example, we provide a

potential V which satisfies,

(3.1.9)
∫

Ω

|V−|
n
2 Xa

1dx < ∞, ∀ a > 1 − n
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but

(3.1.10)
∫

Ω

|V−|
n
2 X1−n

1 dx = ∞,

and in which case the problem (3.1.8) has a solution φ ∈ H1(Ω).

Example 1 We consider the radially symmetric function u(x) = |x|−
n−2

2 Xβ
1(|x|) for β > 1

2 which belong to H1(B1(0)). By

straightforward calculation we have

−∆u = −r−1− n
2 (β(β + 1)Xβ+2

1 (r) −
(n − 2)2

4
Xβ

1(r)) =
(n − 2)2

4
u
|x|2

+ Vu,

with V(x) = −β(β + 1) X2
1
|x|2 . Note here that u ∈ H1(B1(0)) is a nontrivial solution of problem (3.1.8) and the potential

V(x) satisfies the condition (3.1.9) and (3.1.10).

Before we go to prove Theorem 3.1.1, let us prove the Harnack inequality for the positive solutions of problem 3.1.8

which is crucial to our analysis. But first we need the following proposition which Kurata proved in [Ku]. This propo-

sition give to us Harnack inequality for the solutions of linear elliptic equations which include potentials in local Kato

class Kn(Ω). Let us first define the local Kato class Kn(Ω). We set

η( f ; r; Ω) = sup
x∈Rn

∫
Br(x)

| f (y)|χΩ

|x − y|n−2 dy,

then the function f belong to Kn(Ω) if and only if

lim
r→0

η( f ; r; Ω) = 0.

Theorem 3.1.2. Let u a nonnegative weak solution of

Lu = −

n∑
i, j=1

(ai, juxi )x j +

n∑
i=1

biuxi + V(x)u(x) = 0 in Ω,

where Ω is a bounded open subset of Rn and the (ai, j)n
i, j=1 satisfy the following conditions:

1. ai, j = a j,i ∀ i, j = 1, .., n

2. λ|ξ|2 ≤
∑n

i, j=1 ai, jξiξ j ≤ λ
−1|ξ|2 ∀ξ ∈ Rn, f or some λ ∈ (0, 1]

and V, (b2
i )n

i=1 belong to the local Kato class Kn(Ω). Consider also the constant η(n, λ) > 0 be small enough such that

η(V; r; Ω) +

n∑
i=1

η(b2
i ; r; Ω) < η, ∀r ≤ r0,

for some r0(n, λ, η) > 0. Then there exists constant C = C(n, λ, η) such that :

max
Br

u ≤ C min
Br

u,

for B4r ⊂ Ω and ∀ r < r0.

Lemma 3.1.3. Let u be an H1(Ω) solution of (3.1.8) where the negative part of the potential V satisfies the assumption

(3.1.7) and the positive part of the potential V belong to the Lorentz space L
n
2 ,∞(Ω). Also assume that B 3

2
⊂⊂ Ω and
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consider for λ ≥ 1 the domain

Dλ = {
1

2λ
< |x| <

2
3λ
}.

Then there exists a positive constant C such that

u(x) ≤ Cu(y) ∀x, y ∈ Dλ,

where the positive constant C depends only on n, ||V ||L n
2 ,∞(Ω) and Ω but does not depend on λ ≥ 1.

proof: We assume that BR ⊂⊂ Ω. Then we set r1 = dist{∂BR, ∂Ω} and take x ∈ BR \ Bρ for ρ < R. Also we take r such

that 4r ≤ min{r1,ρ}
3 . Then we note that V ∈ Kn(Br(x)) ∀x ∈ BR \ Bρ, since V ∈ Lp(Br(x)) for some p > n

2 and∫
Br(x)

V
|x − y|n−2 dx +

∫
Br(x)

C(n)
|y|2|x − y|n−2 dx ≤

||V ||Lp(BR\Bρ)

( ∫
Br(x)

1

|x − y|
p(n−2)

p−1

dx
) p−1

p

+ (
12

11ρ
)2

∫
Br(x)

1
|x − y|n−2 dx

≤ c(n,Ω)r2− n
p (||V ||Lp(BR\Bρ) + (

12
11ρ

)2).

But, note that

||V ||Lp(BR\Bρ) =

(
|BR \ Bρ|

1− 2
np

|BR \ Bρ|
1− 2

np

∫
BR\Bρ

|V |pdx
) 1

p

≤ C|Ω|
1
p−

2
np2 |||V |p||

1
p

L
np
2 ,∞(Ω)

= C(n, p,Ω)||V ||L n
2 ,∞(Ω).

Let η as in Theorem 3.1.2, we can choose r0 > 0 such that

C(n, p,Ω)
(
||V ||L n

2 ,∞(Ω) + (
12

11ρ
)2
)
r

2− n
p

0 ≤ η⇔

(3.1.11) r
2− n

p

0 ≤
η

C(n, p,Ω)(||V ||L n
2 ,∞(Ω) + ( 12

11ρ )2)
.

Then u satisfies the assumptions of Theorem 3.1.2 and we have that

u(z) ≤ Cu(y) ∀ z, y ∈ Br(x),

B4r ⊂ BR \ Bρ and the constants C, r0 depend on (n, η, ρ).

We next set λ = 1, then by (3.1.11) and Theorem 3.1.2 there exists η and r0 such that

r
2− n

p

0 ≤
η

C(n, p,Ω)(||V ||L n
2 ,∞(Ω) + ( 24

11 )2)

and

u(z) ≤ Cu(y) ∀ z, y ∈ Br(x),

where B4r ⊂ D and constants C, r0 depends on (n, η, V). Then, since D is compact there exists N(n) and xi ∈ D1

such that D ⊂
⋃N

i=1 Br0 (xi). And we obtain obviously

u(x) ≤ CNu(y) ∀ x, y ∈ D.
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Let take now the set Dλ for λ ≥ 1, then we have

( r0

λ

)2− n
p

≤
η

C(n, p,Ω)(||V ||L n
2 ,∞(Ω) + ( 24λ

11 )2)
≤

η

C(n, p,Ω)(||V ||L n
2 ,∞(Ω) + ( 24

11 )2)

and since r0
λ
< r0, we note that for the same xi, r0, N as above that

Dλ ⊂

N⋃
i=1

Br0 (
xi

λ
),

which imply,

u(x) ≤ CNu(y) ∀ x, y ∈ Dλ,

and the proof of Lemma is complete. �

proof of Theorem 3.1.1: For the proof of Theorem, we argue by contradiction. That is, we assume that u is a H1(Ω)

positive solution of (3.1.8) (then by standard elliptic regularity we know that u ∈ W2,p
loc (Ω \ {0})∩Cloc(Ω \ {0}) for some

p > 1). Thus we can take the surface average of u,

(3.1.12) U(r) =
1

nwnrn−1

∫
∂Br

u(x)dS x,

where wn denotes the volume of the unit ball in Rn and without loss of generality, we assume that the unit ball is

contained in Ω. Standard calculations show that, U satisfies the O.D.E almost everywhere

(3.1.13) U′′(r) +
n − 1

r
U′(r) +

(n − 2)2

4
U(r)

r2 = f (r) − g(r) a.e,

where

(3.1.14) f (r) =
1

nwnrn−1

∫
∂Br

V−u(x)dS x

and

(3.1.15) g(r) =
1

nwnrn−1

∫
∂Br

V+u(x)dS x.

We next change variable by

(3.1.16) W(r) = r
n−2

2 U(r),

thus by equation (3.1.13), W satisfies the following O.D.E

(3.1.17) (rW ′)′ = r
n
2 ( f (r) − g(r)) a.e.

Hence, by Lemma 3.1.4 (see below), we have that there exists a constant C > 0 independent on r such that

(3.1.18) W(r) ≤ CX
n−2
2n

1 (r).

To reach a contradiction we will find a lower bound for W that is incompatible with (3.1.18). Working in this direction,
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first we set

W(r) = Xβ
1(r)Z(r),

where

−
1
2
< β < 0.

Then, by straightforward calculations we obtain that Z satisfies the following O.D.E a.e

rXβ
1(r)Z′′(r) + 2βXβ+1

1 (r)Z′(r) + Xβ
1(r)Z′(r) + β(β + 1)

Xβ+2
1 (r)

r
Z(r) = r

n
2 ( f (r) − g(r)) a.e.

We next multiply the above equation by Xβ
1 and we obtain that

(3.1.19) (rX2β
1 (r)Z(r)′)′ = Xβ

1(r)r
n
2 ( f (r) − g(r)) − β(β + 1)

X2β+2
1 (r)

r
Z(r) a.e.

Next, we set

(3.1.20) Q(r) = rX2β
1 (r)

Z′(r)
Z(r)

,

then by equation (3.1.19), we obtain that Q satisfies the following O.D.E

(3.1.21) rX2β
1 (r)Q′(r) + Q2(r) = F(r) −G(r) − β(β + 1)X4β+2

1 (r) a.e,

where

(3.1.22) F(r) =
r1+ n

2 X3β
1 (r) f (r)

Z(r)
,

(3.1.23) G(r) =
r1+ n

2 X3β
1 (r)g(r)

Z(r)
.

Thus, by Lemmas 3.1.5, 3.1.6 (see below) we have that, given ε > 0 there exist r0 > 0 and − 1
2 < β0 < 0 such that

Q(r) ≤ εX2β+1
1 (r), ∀ 0 < r ≤ r0, β0 ≤ β < 0

that is
Z′(r)
Z(r)

≤ ε
X1(r)

r
.

Integrating this from r to r0, we obtain,

Z(r) ≥ CXε
1(r),

where C > 0 is independent on r, which contradicts by the fact that

CXε
1(r) ≤ Z(r) = X−β1 (r)W(r) ≤ CX

n−2
2n −β

1 (r),

if we choose ε and |β| small enough. The result follows. �

It remains to prove the three lemmas which we used in the proof of Theorem 3.1.1. At first we have:
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Lemma 3.1.4. Let U, W, f, g be as defined in (3.1.12), (3.1.16), (3.1.14), (3.1.15), respectively, with V as in Theorem

3.1.1 and u ∈ H1(Ω). We also assume that B1(0) ⊂ Ω and W satisfies in (0, 1] the equation (3.1.17). Then

(i) limr↓0 W(r) = 0.

(ii) For r ∈ (0, 1], the following representation formula holds,

(3.1.24) W(r) =

∫ r

0

1
t

∫ t

0
s

n
2 ( f (s) − g(s))dsdt.

(iii) In addition, for r sufficiently small, say r < r0, the following estimate holds:

(3.1.25) W(r) ≤ CX
(n−2)

2n
1 (r) ∀ 0 < r < r0,

for some positive constant C independent on r.

proof:

(i) For the proof of the first statement of Lemma, we argue by contradiction. We assume that there exists positive

constants C0 > 0 and r0 > 0 such that W(r) > C0 for 0 < r < r0. Now since u ∈ H1(Br0 ), we have also that

u ∈ L
2n

n−2 (Br0 ). Then it follows from the definitions of U and W ( using Hölder’s inequality ) that

1
rn−1

∫
∂Br

|u|
2n

n−2 dS x ≥ c
( 1
rn−1

∫
∂Br

udS x

) 2n
n−2

= CU(r)
2n

n−2 = C(r−
n−2

2 W(r))
2n

n−2 ≥ C
1
rn .

Hence, multiply the last inequality by rn−1 and then integrate it from 0 to r0 to obtain that∫
Br0

|u|
2n

n−2 dx ≥ C
∫ r0

0

1
r

dr = ∞.

This is a clearly contradiction, since u ∈ L
2n

n−2 (Br0 ) and C is independent from r. The first statement of Lemma follows.

(ii) To prove the second statement of Lemma, we note that the W-equation can be easily integrated to yield

(3.1.26) W(r) = C1 +

∫ 1

r

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt.

First, we will show that the following limit exists

lim
t→0

∫ 1

t
s

n
2 ( f (s) − g(s))ds = I2 < ∞

At first we note that I2 , −∞, since otherwise (3.1.26) would contradict the positivity of W. Hence, it is enough to

show that

J :=
∫ 1

0
s

n
2 f (s)ds

= C(n)
∫ 1

0
r
−n+2

2

∫
∂Br

V−(x)u(x)dS xdr < ∞.
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Since u ∈ H1(Ω), we have u ∈ L
2n

n−2 (Ω). Thus by applying Hölder’s inequality as follows, we have :∫
∂Br

V−(x)u(x)dS x ≤ C(
∫
∂Br

|V−|
n
2 dS x)

2
n (
∫
∂Br

|u|
2n

n−2 dS x)
n−2
2n (

∫
∂Br

1dS x)
n−2
2n

= r(n−1) n−2
2n X

2(n−1)
n

1 C
( ∫

∂Br

|V−|
n
2 X1−n

1 dS x

) 2
n
( ∫

∂Br

|u|
2n

n−2 dS x

) n−2
2n

.

Hence, taking into account the last inequality in J and use Hölder’s inequality once more we obtain :

J ≤ C
∫ 1

0
r−

n−2
2n X

2(n−1)
n

1

( ∫
∂Br

|V−|
n
2 X1−n

1 dS x

) 2
n
( ∫

∂Br

|u|
2n

n−2 dS x

) n−2
2n

dr

≤ C(n)
( ∫

Ω

|V−|
n
2 X1−n

1 dS x

) 2
n

||u||
L

2n
n−2 (Ω)

( ∫ 1

0

X
4(n−1)

n−2
1

r
dr

) n−2
2n

< ∞.

The reason which the last integral in the above inequality is finite follows by noting first 4(n−1)
2n > 1 and

( ∫ r

0

X
4(n−1)

n−2
1

s
ds

) n−2
2n

=
X

3n−2
2n

1 (r)

( 3n−2
n )

n−2
2n

Also, note that we have the following estimate

(3.1.27)
∫ r

0
s

n
2 f (s)ds ≤ CX

(−3n+2)
2n

1 (r).

We are ready now to compute the constants. In view of the statement (i) of Lemma and the fact that I2 is finite, we

assert that C2 = −I2. Since otherwise, we would have that, there would exist t0 > 0 such that ∀ 0 < t < t0 < 1

C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds >

C2 + I2

2
, i f C2 + I2 > 0

or

C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds <

C2 + I2

2
, i f C2 + I2 < 0

hence, ∫ 1

r

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt

=

∫ 1

t0

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt +

∫ t0

r

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt.

But if I2 + C2 > 0 then ∫ t0

r

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt ≥

I2 + C2

2

∫ t0

r

1
t

dt

=
I2 + C2

2
(ln(t0) − lnr)→ ∞

or if I2 + C2 < 0 then ∫ t0

r

1
t

(C2 +

∫ 1

t
s

n
2 ( f (s) − g(s))ds)dt ≤

I2 + C2

2

∫ t0

r

1
t

dt

=
I2 + C2

2
(ln(t0) − ln(r))→ −∞.
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Thus, in the first case we have a contradiction by the statement (i) of Lemma, and in the second case we have a

contradiction by positivity of W. Hence equation (3.1.24) can be written as

W(r) = C1 −

∫ 1

r

1
t

∫ 1

0
sn/2( f (s) − g(s))ds)dt.

To compute C1, first we observe (using (3.1.27)) that

(3.1.28)
∫ 1

r

1
t

∫ 1

0
s

n
2 f (s)dsdt ≤ C

∫ 1

r
t−1X

(3n−2)
2n

1 dt = X
n−2
2n

1 |
1
r < C

where C is independent on r. Now, note that

(3.1.29)
∫ 1

r

1
t

∫ 1

0
s

n
2 g(s)dsdt < ∞,

since otherwise, we would have

W(r) = C1 −

∫ 1

r

1
t

∫ 1

0
s

n
2 ( f (s) − g(s))dsdt

= C1 −

∫ 1

r

1
t

∫ 1

0
s

n
2 f (s)dsdt +

∫ 1

r

1
t

∫ 1

0
s

n
2 g(s)dsdt,

but the first integral in the above equation is finite by (3.1.28), hence W(r)→ ∞, as r go to zero which is a contradiction

by the statement (i) of Lemma. Thus, by (3.1.28), (3.1.29) and the statement(i) of Lemma, we choose C1 = I1 (since

otherwise W(r) would not go to zero as r approaches zero), thus with this choice of C1 the representation formula

follows.

(iii) Finally, to prove the third statement(iii) of the Lemma, we use the representation formula and (3.1.27),

W(r) =

∫ r

0

1
t

∫ t

0
s

n
2 ( f (s) − g(s))dsdt ≤

∫ r

0

1
t

∫ t

0
s

n
2 f (s)dsdt

≤ C
∫ r

0
s−1X

3n−2
2n

1 ds = CX
n−2
2n

1 (r),

and the result follows. �

Let us now prove the O.D.E lemma.

Lemma 3.1.5. Let Q be a solution of

(3.1.30) rX2β
1 Q′(r) + Q2(r) = F(r) −G(r) − β(β + 1)X4β+2

1 (r) a.e, in 0 < r ≤ 1

where F, G are nonnegative functions, −1/2 < β < 0 and

∫ 1

0

X−2β
1 F(s)

s
ds < ∞,

then

lim
r↓0

Q(r) = 0.
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Moreover if given any ε > 0 there exist r0 > 0 such that ∀ r ≤ r0 to have

∫ r

0

X−2β
1 F(s)

s
ds ≤ εX2β+1

1 (r),

then for sufficiently small |β|, we have the following estimate

Q(r) ≤ 2εX2β+1
1 .

proof: After multiplying equation (3.1.30) by X−2β
1
r and integrating it from r to r0 with r < r0, we have

Q(r) =

∫ r0

r

X−2β
1 (s)Q2(s)

s
ds + Q(r0) +

∫ r0

r

X−2β
1 (s)G(s)

s
ds −

∫ r0

r

X−2β
1 (s)F(s)

s
ds

+ β(β + 1)
∫ r0

r

X2β+2
1 (s)

s
ds.(3.1.31)

Note that the last integral in (3.1.31) is finite since β > − 1
2 . We next claim that

∫ 1

0

X−2β
1 (s)Q2(s)

s
ds < ∞,

since otherwise H(r) =
∫ 1

r
X−2β

1 (s)Q2(s)
s ds → ∞ as r approaches zero. But, by equation (3.1.31) limr→0 Q(r) = ∞ which

implies that we can always find r0 > 0 such that

(3.1.32) Q(r) >
∫ 1

0

X−2β
1 (s)F(s)

s
ds − β(β + 1)

∫ 1

0

X2β+2
1 (s)

s
ds, ∀r ≤ r0.

We may then rewrite (3.1.31) as

(−rX2β
1 (r)H′(r))

1
2 = H(r) + Q(r0) +

∫ r0

r

X−2β
1 G(s)

s
ds −

∫ r0

r

X−2β
1 F(s)

s
ds

+ β(β + 1)
∫ r0

r

X2β+2
1 (s)

s
ds,

by using (3.1.32) and the fact that G ≥ 0 we have

(−rX2β
1 H′(r))

1
2 ≥ H(r), ∀r ≤ r0.

Hence for r ≤ r0 we have that :

−rX2β
1 (r)H′(r) ≥ H2(r)⇔

( 1
H(r)

−
X−2β−1

1 (r)
−2β − 1

)′
≥ 0.

Integrating this from r to r0 we obtain

−
1

H(r)
+

X−2β−1
1 (r)
−2β − 1

≥ C,

where C is a real constant. But, we have a contradiction, since H(r) grows to infinity as r tends to zero and limr→0
X−2β−1

1 (r)
−2β−1 =

−∞. Hence, limr→0 H(r) < ∞.

Now, we have three cases :
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1. Q2(r)→ ∞ as r → 0

2. Q2(r)→ c > 0 as r → 0

3. Q2(r)→ 0 as r → 0

Let us assume that the first case is true. Then there are r0, M > 0 such that ∀ 0 < r < r0 to have Q2(r) > M. Hence,

∫ 1

0

X−2β
1 (s)Q2(s)

s
ds ≥

∫ 1

r0

X−2β
1 (s)Q2(s)

s
ds +

∫ r0

0

X−2β
1 (s)Q2(s)

s
ds

≥

∫ 1

r0

X−2β
1 (s)Q2(s)

s
ds + M

∫ r0

0

X−2β
1 (s)

s
ds =

∫ 1

r0

X−2β
1 (s)Q2(s)

s
ds + M

∫ r0

0
(
X−2β−1

1 (s)
−2β − 1

)′ds = ∞,

which contradicts by the fact that
∫ 1

0
X−2β

1 (s)Q2(s)
s ds < ∞.

Respectively, if we assume that the second case is true, then we can choose r0 > 0 such that ∀ r < r0 to have that

Q2(r) > c − ε, where we have chosen ε = c
2 , hence, by the same arguments as the first case we reach to contradiction.

Thus, limr→0Q(r) = 0 and the first statement of Lemma follows. To prove the second statement, we note first that, since

Q(r) approaches zero as r go to zero, the following representation formula hold

(3.1.33) Q(r) = −

∫ r

0

X−2β
1 (s)Q2(s)

s
ds −

∫ r

0

X−2β
1 (s)G(s)

s
ds +

∫ r

0

X−2β
1 (s)F(s)

s
ds −

β(β + 1)
2β + 1

X2β+1
1 (r).

Next, given ε > 0 we choose r0 > 0 such that

∫ r

0

X−2β
1 (s)F(s)

s
ds ≤ εX2β+1

1 (r), ∀r ≤ r0

and β0 > −1/2 such that − β(β+1)
2β+1 ≤ ε, ∀ β0 ≤ β < 0. Thus, by representation formula (3.1.33) and using the fact that

the first and the second integral are non-positive, we have the second statement of Lemma. �

Lemma 3.1.6. Given ε > 0 there exists r0 > 0 such that for all r ≤ r0 to have

∫ r

0

X−2β
1 (s)F(s)

s
ds < εX2β+1

1 (r),

where,

F(r) =
r2X4β

1

∫
∂Br

V−udS x∫
∂Br

udS x
,

V satisfies the assumptions of Theorem (3.1.1) and u is an H1(Ω) solution of (3.1.8).

proof: We assume that B3/2 ⊂⊂ Ω and consider the domain Dλ = { 1
2λ < |x| <

2
3λ }, for λ ≥ 1. Then, by Lemma 3.1.3 we

have that there exists constant C > 0 which depends only on n, V and Ω such that

u(x) ≤ Cu(y) ∀x, y ∈ Dλ,

thus by the last inequality we have

u(x) ≤ Cu(y) ∀ x, y ∈ Kr = {|x| = r}.
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Then we obtain that,

X−2β
1 (r)F(r)

r
=

rX2β
1 (r)

∫
∂Br

V−udS x∫
∂Br

udS x

≤ Cr−n+2X2β
1 (r)

∫
∂Br

V−dS x ≤ Cr−n+2X
2β+

2(n−1)
n

1 (r)
( ∫

∂Br

|V−|
n
2 X1−n

1 dS x

) 2
n
( ∫ r

0
ds

) n−2
n

= Cr−
n−2

n X
2β+

2(n−1)
n

1 (r)
( ∫

∂Br

|V−|
n
2 X1−n

1 dS x

) 2
n

where have also used Hölder’s inequality. Applying Hölders inequality once more we obtain,

∫ r

0

X−2β
1 (s)F(s)

s
ds ≤ C

( ∫
Br

|V−|
n
2 X1−n

1 dx
) 2

n
( ∫ r

0
s−1X

2βn
n−2 +

2(n−1)
n−2

1 ds
) n−2

n

= C
( ∫

Br

|V−|
n
2 X1−n

1 dx
) 2

n X2β+1
1 (r)

( (2β+1)n
n−2 )

n−2
n

and the result follows. �

3.2 Nonexistence W1,2(Ω; φ2
k−1) solutions

In this section we suppose that n ≥ 3 and Ω is an open bounded domain which contains the origin. We next introduce

a new function space which is the appropriate setting in our analysis. We denote by W1,2
0 (Ω; φ2

k−1) the Hilbert space

which is the completion of C∞0 (Ω) under the norm

(∫
Ω

φ2
k−1u2dx +

∫
Ω

φ2
k−1|Du|2dx

) 1
2

,

where

(3.2.34) φk(|x|) = |x|−
n−2

2 X−
1
2

1 (
|x|
D

)X−
1
2

2 (
|x|
D

) · · · X−
1
2

k (
|x|
D

),

X1(t) = (1 − ln t)−1, D = supx∈Ω |x|, and Xk(t) := X1(Xk−1(t)), for k ≥ 2. Also we set φ0 = 1
|x|n−2 . We recall the inequality

in [FT]

(3.2.35)
(∫

Ω

φ2
k−1|Du|2dx

) 1
2

≥ C
( ∫

Ω

|u|
2n

n−2

|x|n
(

k−1∏
i=1

Xi)X
2(n−1)

n−2
k dx

) n−2
2n

, ∀u ∈ W1,2
0 (Ω; φ2

k−1)

Now we consider a potential V ∈ Lp
loc(Ω) for p > n

2 that has the following properties:

i) there exists b > 0 such that:∫
Ω

φ2
k−1|∇v|2dx ≥

1
4

∫
Ω

|v|2

|x|2
X2

k (
|x|
D

)φ2
k−1(
|x|
D

)dx

+ b
∫

Ω

Vφ2
k−1v2dx, ∀v ∈ W1,2

0 (Ω; φ2
k−1),(3.2.36)
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ii) V+ ∈ L
n
2 ,∞(Ω)

iii) and V− satisfies the following condition

(3.2.37)
∫

Ω

|V−|
n
2 (

k+1∏
i=1

Xi)1−ndx < ∞,

We next suppose that the constant b > 0 in (3.2.36) is optimal. Our main question is whether the best constant b > 0

in (3.2.36) is achieved for some function u ∈ W1,2
0 (Ω; φ2

k−1), or equivalently whether the corresponding Euler-Lagrange

equation

(3.2.38)
−div(φ2

k−1Dv) = 1
4 X2

k Xk−1 · · · X1
v
|x|n + Vφ2

k−1v, in Ω \ {0}

v 	 0 in Ω,

has ∈ W1,2(Ω, φ2
k−1) solutions. The answer is given in the following theorem

Theorem 3.2.1. Suppose for some p > n
2 the potential V ∈ Lp

loc(Ω\{0}) is such that (3.2.36) holds. We also assume that

V+ ∈ L
n
2 ,∞(Ω) and V− satisfies condition (3.2.37). Then problem (3.2.38) has no W1,2(Ω; φ2

k−1) nontrivial solutions.

We note here that the assumption on the potential V is optimal. Particularly in the next example, we provide a potential

V which satisfies,

(3.2.39)
∫

B1(0)
|V−|

n
2 (

k∏
i=1

Xi)1−nXa
k+1dx < ∞ ∀a > 1 − n,

but

(3.2.40)
∫

B1(0)
|V−|

n
2 (

k∏
i=1

Xi)1−nX1−n
k+1 dx = ∞,

and in which case the problem (3.2.38) has a solution φ ∈ W1,2(Ω; φ2
k−1),

Example 2 We consider the function u(x) = Xβ
k+1X−

1
2

k for β > 1
2 which belong to W1,2(Ω; φ2

k−1). Then, we obtain

by straightforward calculation that

div(
1
|x|n−2 X−1

1 · · · X
−1
k−1Du) =

(
β(β + 1)Xβ+2

k+1 X
3
2
k Xk−1 · · · X1 +

β

2
Xβ+1

k+1 X
3
2
k Xk−1 · · · X1

−
β

2
Xβ+1

k+1 X
3
2
k Xk−1 · · · X1 −

1
4

Xβ
k+1X

3
2
k Xk−1 · · · X1

) 1
|x|n

= −bVuφ2
k−1 −

1
4

X2
k Xk−1 · · · X1

u
|x|2

.

That is the function u is a solution of problem (3.2.38) with potential V = − 1
4

X2
k Xk−1···X1

|x|2 . We note here that the potential

V satisfies the condition (3.2.39) and (3.2.40) condition (3.2.37).

Before we prove the Theorem 3.2.1, let us give a Harnack type inequality for positive solutions of problem (3.2.38).

Lemma 3.2.2. Let u be a W1,2(Ω; φ2
k−1) solution of (3.2.38) where the potential V satisfies the assumptions of Theorem
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3.2.1 and assume that B 3
2
⊂⊂ Ω. Then there exists a positive constant C such that

u(x) ≤ Cu(y) ∀x, y ∈ Kr = {z ∈ Ω : |z| = r} and r ≤
3
2
,

where constant C depends only on n, ||V ||L n
2 ,∞(Ω) and Ω.

proof: We set u = φ−1
k−1υ. Then

−∆υ = Vυ, in Ω \ {0}

where

V = V +
(n − 2)2/4 +

∑n
i=1 X2

1 · · · X
2
i

|x|2
.

Thus as Lemma 3.1.3 there exist a constant C > 0 independent on r such that ∀ x, y ∈ {z : |z| = r} to have

υ(x) ≤ Cυ(y)⇒ φk−1u(x) ≤ Cφk−1u(y).

�

proof of Theorem 3.2.1: As in Theorem 3.1.1, we may assume that u is a W1,2(Ω; φ2
k−1) nontrivial positive solu-

tion of (3.2.38) (then by standard elliptic regularity we know that u ∈ W2,p
loc (Ω \ {0})∩Cloc(Ω \ {0}) for some p > 1). We

next take the surface average of u :

(3.2.41) U(r) =
1

nwnrn−1

∫
∂Br

u(x)dS x,

where wn denotes the volume of the unit ball in Rn. Without loss of generality, we may assume that the unit ball is

contained in Ω. As in Theorem 3.1.1, we show by straightforward calculation that U satisfies the following O.D.E,

(3.2.42) rz−1
k−1U′′ + U′(z−1

k−1 − rz−2
k−1z′k−1) +

1
4

X2
k zk−1

r
+ rz−1

k−1(g(r) − f (r)) = 0 a.e,

where zk = X1 · · · Xk and f , g defined as (3.1.14) and (3.1.15) respectively. Next, we set

(3.2.43) U = X−
1
2

k W,

thus the equation (3.2.42) becomes

−X
1
2
k W ′ + r(z−1

k−1)′X−
1
2

k W ′ + z−1
k−1X−

1
2

k W ′ + rz−1
k−1X−

1
2

k W ′′ = rϕ2
k−1( f − g) a.e.

Finally, if we multiply the last equation by X−
1
2

k , we can easily obtain that:

(3.2.44) (rz−1
k W ′)′ = rz−1

k−1X−
1
2

k ( f (r) − g(r)) a.e.

Hence, by Lemma 3.2.3 (see below), we have that there exists a constant C > 0 independent on r such that

(3.2.45) W(r) ≤ CX
n−2
2n

k+1(r).

To reach a contradiction we will find a lower bound for W that is incompatible with (3.2.45). Working in this direction,
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we set W(r) = Xβ
k+1Z(r) for − 1

2 < β < 0. We can easily check that Z satisfies the following O.D.E

(3.2.46) (rX2β
k+1z−1

k Z′)′ = rXβ
k+1z−1

k−1X−
1
2

k ( f (r) − g(r)) − β(β + 1)
X2β+2

k+1 zk

r
a.e.

Next we set Q =
rX2β

k+1z−1
k Z′

Z and by simple calculations, we note that Q satisfies the following O.D.E

rX2β
k+1z−1

k Q′(r) + Q2(r) =
r2X3β

k+1X−
3
2

k z−2
k−1 f (r)

Z
−

r2X−
3
2

k z−2
k−1g(r)

Z
− β(β + 1)X4β+2

k+1

:= F(r) −G(r) − β(β + 1)X4β+2
k+1 a.e.(3.2.47)

Thus, by Lemmas 3.2.4, 3.2.5 (see below) we obtain that, given ε > 0 there exist r0 > 0 and −1/2 < β0 < 0 such that

Q(r) ≤ εX2β+1
k+1 (r), ∀0 < r ≤ r0, β0 ≤ β < 0

that is
Z′(r)
Z(r)

≤ ε
Xk+1(r)zk(r)

r
.

Integrating this from r to r0, we obtain,

Z(r) ≥ CXε
k+1(r),

where C > 0 is independent on r, which contradicts by the fact that

CXε
k+1(r) ≤ Z(r) = X−βk+1(r)W(r) ≤ CX

n−2
2n −β

k+1 (r),

if we choose ε and |β| small enough. The result follows. �

Lemma 3.2.3. Let U, W, f, g be as defined in (3.2.41), (3.2.43), (3.1.14), (3.1.15) respectively. We also assume that

B1(0) ⊂ Ω, V is as in Theorem 3.2.1, u ∈ W1,2(Ω; φ2
k−1) and W satisfies in (0, 1] the equation (3.2.46) almost everywhere.

Then

(i) limr↓0 W(r) = 0.

(ii) For all r ∈ (0, 1], the following representation formula holds,

(3.2.48) W(r) =

∫ r

0

zk

t

∫ t

0
sX−1/2

k z−1
k−1( f (s) − g(s))dsdt.

(iii) In addition, for r sufficiently small, say r < r0, there exists a positive constant independent on r such that,

(3.2.49) W(r) ≤ CX
n−2
2n

k+1(r) 0 < r < r0.

proof: For the proof of statement (i) of Lemma, we argue by contradiction. We assume that W(t) > C0 > 0 ∀t ∈ (0, r0).

Then it follows from the definitions of U and W ( using Hölder’s inequality) that

1
rn−1

∫
∂Br

|u|
2n

n−2 zk−1X
2(n−1)

n−2
k

|r|n
dS x ≥ c

( 1
rn−1

∫
∂Br

|u|z
n−2
2n

k−1X
n−1

n
k

|r|
n−2

2

dS x

) 2n
n−2

= C
X

2(n−1)
n−2

k (r)zk−1(r)
rn

(
W(r)X−

1
2

k (r)
) 2n

n−2

≥ C
zk(r)

rn ,
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for some positive constant C independent on r. Hence, multiply the last inequality by rn−1 and integrating it from 0 to

r0, we obtain that ∫
Br0

|u|
2n

n−2 zk−1X
2(n−1)

n−2
k

|x|n
dx ≥ C

∫ r0

0
(log Xk)′dr = ∞.

This is clearly a contradiction, since in view of (3.2.35) we have that
∫

Br0

|u|
2n

n−2 zk−1X
2(n−1)

n−2
k

|x|n dx < ∞. The first statement of

lemma follows.

(ii)

To prove the second statement we note that the W-equation can be easily integrated to yield

(3.2.50) W(r) = C1 +

∫ 1

r

zk(t)
t

(C2 +

∫ 1

t
sX−

1
2

k z−1
k−1( f (s) − g(s))ds)dt.

First, we will show that the following limit exists

lim
t→0

∫ 1

t
sX−

1
2

k z−1
k−1( f (s) − g(s))ds = I2 < ∞

At first we note that I2 , −∞, since otherwise (3.2.50) would contradict the positivity of W. Hence, it is enough to

show that

J :=
∫ 1

0
sX−

1
2

k z−1
k−1 f (s)ds

= C(n)
∫ 1

0
r−n+2X−

1
2

k z−1
k−1

∫
∂Br

V−(x)u(x)dS xdr < ∞.

By applying Hölder’s inequality as follows, we obtain :

∫
∂Br

V−(x)u(x)dS x ≤ C
( ∫

∂Br

|V−|
n
2 dS x

) 2
n
( ∫

∂Br

|u|
2n

n−2 dS x

) n−2
2n

( ∫
∂Br

1dS x

) n−2
2n

= r
(n−2)(2n−1)

2n X
2(n−1)

n
k+1 X

n−1
n

k z
3n−2

2n
k−1 ×

× C
( ∫

∂Br

|V−|
n
2 z1−n

k+1dS x

) 2
n
( ∫

∂Br

|u|
2n

n−2 zk−1X
2(n−1)

n−2
k

rn dS x

) n−2
2n

.

Hence, taking into account the last inequality in J and use Hölder’s inequality once more we obtain :

J ≤ C(n)
( ∫

Ω

|V−|
n
2 z1−n

k+1dx
) 2

n

∫
L1(Br0 )

|x|−n|u|
2n

n−2 zk−1X
2(n−1)

n−2
k


n−2
2n ( ∫ 1

0
r−1X

4(n−1)
n−2

k+1 zkdr
) n−2

2n

< ∞.

Since u ∈ W1,2(Ω; φ2
k−1) we have in view of (3.2.35)

∫
L1(Br0 )

|x|−n|u|
2n

n−2 zk−1X
2(n−1)

n−2
k


n−2
2n

< ∞.

Also, the last integral above is finite since,

(3.2.51)
( ∫ r

0
s−1X

4(n−1)
n−2

k+1 zkds
) n−2

2n

=
X

3n−2
2n

k+1 (r)

( 3n−2
n )

n−2
2n
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Thus I2 < ∞. The representation formula (3.2.48) follows by the same arguments as in Lemma 3.1.4.

(iii) To prove now the third statement of Lemma, we use the representation formula (3.2.48), the fact that g ≥ 0 and the

estimate (3.2.51)

W(r) =

∫ r

0

zk

t

∫ t

0
sX−

1
2

k z−1
k−1( f (s) − g(s))dsdt ≤

∫ r

0

zk

t

∫ t

0
sX−

1
2

k z−1
k−1 f (s)dsdt

≤ C
∫ r

0

zkX
3n−2

2n
k+1

s
ds = CX

n−2
2n

k+1(r)

�

Let us now give the analogue O.D.E lemma as lemma (3.1.5).

Lemma 3.2.4. Let Q be a solution of

(3.2.52) rX2β
k+1z−1

k Q′(r) + Q2(r) = F(r) −G(r) − β(β + 1)X4β+2
k+1 a.e, in 0 < r ≤ 1

where F, G are nonnegative functions, −1/2 < β < 0 and

∫ 1

0

X−2β
k+1 zkF(s)

s
ds < ∞.

Then

lim
r↓0

Q(r) = 0.

Moreover if given any ε > 0 there exist r0 > 0 such that ∀ r ≤ r0 to have

∫ r

0

X−2β
k+1 zkF(s)

s
ds ≤ εX2β+1

k+1 (r),

then for sufficiently small |β|, we have the following estimate

Q(r) ≤ 2εX2β+1
k+1 (r).

proof: After multiplying equation (3.2.52) by zk X−2β
k+1

r and integrating it from r to r0 with r < r0, we have

Q(r) =

∫ r0

r

zkX−2β
k+1 Q2(s)

s
ds + Q(r0) +

∫ r0

r

X−2β
k+1 zkG(s)

s
ds −

∫ r0

r

X−2β
k+1 zkF(s)

s
ds

+ β(β + 1)
∫ r0

r

X2β+2
k+1 zk

s
ds.(3.2.53)

Note that the last integral in (3.2.53) is finite since β > − 1
2 . We next claim that

∫ 1

0

X−2β
k+1 zkQ2(s)

s
ds < ∞,

since otherwise H(r) =
∫ 1

r
X−2β

k+1 zk Q2(s)
s ds → ∞ as r approaches zero. But, by equation (3.2.53) limr→0 Q(r) = ∞ which

implies that we can always find r0 > 0 such that

(3.2.54) Q(r) >
∫ 1

0

X−2β
k+1 zkF(s)

s
ds − β(β + 1)

∫ 1

0

X2β+2
k+1 zk

s
ds, ∀r ≤ r0.
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We may then rewrite (3.2.53) as

(−rX2β
k+1(r)z−1

k (r)H′(r))
1
2 = H(r) + Q(r0) +

∫ r0

r

X−2β
k+1 zkG(s)

s
ds −

∫ r0

r

X−2β
k+1 zkF(s)

s
ds

+ β(β + 1)
∫ r0

r

X2β+2
k+1 zk

s
ds,

by using (3.2.54) and the fact that G ≥ 0 we have

(−rX2β
k+1(r)z−1

k (r)H′(r))
1
2 ≥ H(r), ∀r ≤ r0.

Hence for r ≤ r0 we have that :

−rX2β
k+1(r)z−1

k (r)H′(r) ≥ H2(r)⇔
( 1

H(r)
−

X−2β−1
k+1 (r)
−2β − 1

)′
≥ 0.

Integrating this from r to r0 we obtain

−
1

H(r)
+

X−2β−1
k+1 (r)
−2β − 1

≥ C,

where C is a real constant. But, we have a contradiction, since H(r) grows to infinity as r tends to zero and limr→0
X−2β−1

k+1 (r)
−2β−1 =

−∞. Hence, limr→0 H(r) < ∞.

Now, we have three cases:

1. Q2(r)→ ∞ as r → 0

2. Q2(r)→ c > 0 as r → 0

3. Q2(r)→ 0 as r → 0

Let us assume that the first case is true. Then there are r0 and M > 0 such that ∀ 0 < r < r0 to have Q2(r) > M. Hence,

∫ 1

0

X−2β
k+1 zkQ2(s)

s
ds ≥

∫ 1

r0

X−2β
k+1 zkQ2(s)

s
ds +

∫ r0

0

X−2β
k+1 zkQ2(s)

s
ds

≥

∫ 1

r0

X−2β
k+1 zkQ2(s)

s
ds + M

∫ r0

0

X−2β
k+1 zk

s
ds =

∫ 1

r0

X−2β
k+1 zkQ2(s)

s
ds + M

∫ r0

0
(

X−2β−1
k+1

−2β − 1
)′ds = ∞,

which contradicts by the fact that
∫ 1

0
X−2β

k+1 zk Q2(s)
s ds < ∞.

Respectively, if we assume that the second case is true, then we can choose r0 > 0 such that ∀ r < r0 to have that

Q2(r) > c − ε, where we have chosen ε = c
2 , hence, by the same arguments as the first case we reach to contradiction.

Thus, limr→0Q(r) = 0 and the first statement of Lemma follows. To prove the second statement, we note first that, since

Q(r) approaches zero as r go to zero, the following representation formula hold

(3.2.55) Q(r) = −

∫ r

0

X−2β
k+1 zkQ2(s)

s
ds −

∫ r

0

X−2β
k+1 zkG(s)

s
ds +

∫ r

0

X−2β
k+1 zkF(s)

s
ds −

β(β + 1)
2β + 1

X2β+1
k+1 (r).

Next, given ε > 0 we choose r0 > 0 such that

∫ r

0

X−2β
k+1 zkF(s)

s
ds ≤ εX2β+1

k+1 (r), ∀r ≤ r0

and β0 > −1/2 such that − β(β+1)
2β+1 ≤ ε, ∀ β0 ≤ β < 0. Thus, by representation formula (3.2.55) and using the fact that

the first and the second integral are non-positive, we have the second statement of Lemma. �



3.2. Nonexistence W1,2(Ω; φ2
k−1) solutions 41

Finally we have

Lemma 3.2.5. Given ε > 0 there exist r0 such that

∫ r

0

X−2β
k+1 zkF(s)

s
ds < εX2β+1

k+1 (r), ∀0 < r ≤ r0,

where

F(r) =
r2X4β

k+1z−2
k

∫
∂Br

V−udS x∫
∂Br

udS x
,

V satisfies the assumptions of Theorem 3.2.1 and u is a W1,2(Ω) solution of (3.2.38).

proof: By Lemma 3.2.2, we have

u(x) ≤ Cu(y) ∀ x, y ∈ {x : |x| = r},

where the positive constant C depends only on n, V and Ω. Then we obtain that,

X−2β
k+1 zkF(r)

r
=

rX2β
k+1z−1

k

∫
∂Br

V−udS x∫
∂Br

udS x
≤ Cr−n+2rX2β

k+1z−1
k

∫
∂Br

V−dS x

≤ Cr−n+2X
2β+

2(n−1)
n

k+1 (r)z
n−2

n
k (r)

( ∫
∂Br

|V−|
n
2 z1−n

k+1dS x

) 2
n
( ∫ r

0
ds

) n−2
n

= Cr−
n−2

n X
2β+

2(n−1)
n

k+1 (r)z
n−2

n
k (r)

( ∫
∂Br

|V−|
n
2 z1−n

k+1dS x

) 2
n

where have also used Hölder’s inequality. Applying Hölders inequality once more we obtain,

∫ r

0

X−2β
k+1 zkF(s)

s
ds ≤ C

( ∫
Br

|V−|
n
2 z1−n

k+1dx
) 2

n
( ∫ r

0
s−1X

2βn
n−2 +

2(n−1)
n−2

k+1 zkds
) n−2

n

= C
( ∫

Br

|V−|
n
2 z1−n

k+1dx
) 2

n X2β+1
k+1 (r)

( (2β+1)n
n−2 )

n−2
n

and the result follows. �
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Chapter 4

Hardy and Hardy-Sobolev Inequalities in
Unbounded Domains

In this chapter, we will prove Hardy and Hardy-Sobolev inequalities in domains with infinite inner radius.

In particular, in subsection 4.1.1 we deal with exterior domains, i.e. complements of smooth compact domains. For our

purposes here, smooth means C2 and we consider exterior domains not containing the origin, for instance Rn \ B1(0).

Also, we suppose that Ω satisfies the following geometric condition

(4.0.1) − ∆d(x) + (n − 1)
∇d(x) · x
|x|2

≥ 0,

in the sense of distributions. Here we denote by d(x) = infy∈∂Ω |x − y|.

Note that this condition is satisfied in case Ω = Rn \ B1(0).

First we state the Hardy-Sobolev inequality inequality under condition (4.0.1).

Theorem 4.0.6. Let n ≥ 4 and Ω be an exterior domain not containing the origin and satisfying condition (4.0.1).

Then the following inequality is valid.

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω),

where the constant C > 0 depends only on Ω and the dimension n.

We stress again that the domains referred the above theorem are of infinite inner radius.

The case n = 3 is different, as we can see from the following Theorem.

Theorem 4.0.7. Let n = 3 and Ω be an exterior domain not containing the origin and satisfying condition (4.0.1) with

strict inequality i.e.

−∆d(x) + 2
∇d(x) · x
|x|2

� 0.

Then the following inequality is valid.

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

X4(
|x|
D

)|u|6dx
) 1

3

, ∀ u ∈ C∞c (Ω),

where X(t) = (1 + ln t)−1, 0 < D < inf{|x| : x ∈ ∂Ω} and the constant C > 0 depends only on Ω. Moreover, the power

4 on X can not be replaced by a smaller power.

43
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In subsection 4.1.2, we give three examples where the Hardy or Hardy-Sobolev inequality does not hold. Especially,

we give two examples in dimension n = 2 (for the sets Ω = Bc
1(0) and Ω = R2 \ {−1 ≤ x ≤ 1}) for which the Hardy

inequality ∫
Ω

|∇u|2dx − c
∫

Ω

u2

d2 dx ≥ 0, ∀ u ∈ C∞0 (Ω),

is not valid even for some constant c < 1
4 .

Finally, we give an example for Ω = R3 \ B1(0) for which the Hardy-Sobolev inequality does not hold.

∫
Bc

1

|∇u|2dx −
1
4

∫
Bc

1

u2

d2 dx ≥ c
( ∫

Bc
1

u6Xa(|x|)dx
) n−2

n

,

where d = |x| − 1, X(t) = (1 + ln(t))−1 and a > 1.

In subsection 4.1.3, we still assume that Ω is an exterior domain and we prove the following theorems without assuming

a geometric condition on Ω.

Theorem 4.0.8. Let n ≥ 4, σ > 0 and Ω be an exterior domain not containing the origin. Then there exist positive

constants C(Ω, n) and C′(Ω, n, σ) such that the following inequality is valid,

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω).

Theorem 4.0.9. Let n = 3, σ > 0 and Ω be an exterior domain not containing the origin. Then there exist positive

constants C(Ω, n) and C′(Ω, n, σ) such that∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

X4(
|x|
ρ

)u6dx
) 1

3

, ∀u ∈ C∞c (Ω),

where X(t) = (1 + ln t)−1, ρ = inf{|x| : x ∈ ∂Ω}. Moreover, the power 4 on X can not be replaced by a smaller power.

In subsection 4.1.4, we deal with the minimizing problem

λ1 = inf
u∈C∞c (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2∫
Ω

u2

1+d2+σ

,

where σ > 0. First we prove that λ1 ∈ R and then we prove the existence of a ground state function φ ∈ H1
loc(Ω) which

solves the corresponding Euler-Lagrange problem in the sense of the weak solutions

−∆φ −
1
4
φ

d2 = λ1
φ

1 + d2+σ
in Ω.

Finally, we prove the following estimate for the function φ

C1
d

1
2 (x)
|x|an

≤ φ(x) ≤ C2
d

1
2 (x)
|x|an

, where an =
n − 1

2
+

√
(n − 2)2

4
−

1
4
.

Finally in section 4.2, we assume that the set Ω is above the graph of a C1,1 function i.e.

Ω = {(x′, xn) ∈ Rn : xn > Γ(x′)},

where Γ : Rn−1 → R satisfies the conditions |∇Γ| < λ and Γ ∈ C1,1(Rn−1) and we prove the following Hardy-Sobolev

inequality
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Theorem 4.0.10. Let n ≥ 3 and Ω be a domain above the graph of C1,1 function which satisfies −∆d ≥ 0 in the sense

of distributions. Then there exists a positive constant C(n, λ) such that the following inequality is valid

∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C(n, λ)
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω).

Observe that the constant in front of critical Sobolev term depends only on dimension n and λ.

4.1 Hardy and Hardy-Sobolev Type Inequalities in Exterior Domains

4.1.1 Hardy and Hardy-Sobolev Type Inequalities in Exterior Domains Special Case

In this section we prove Hardy and Hardy Sobolev type inequalities in exterior domains under the condition (4.1.2).

We call Ω an exterior domain if it is the complement of smooth compact domain. For our purposes here, smooth means

C2 and we consider exterior domains not containing the origin (i.e. there exists ρ > 0 such that Bρ(0) ⊂⊂ Ωc). The

main assumption which we use for Ω is in terms of the distance function d(x) = inf{|x− y| : y ∈ ∂Ω}. More specifically,

we assume that

(4.1.2) − ∆d(x) + (n − 1)
∇d(x) · x
|x|2

≥ 0

in the sense of distributions i.e.∫
Ω

(
−∆d(x) + (n − 1)

∇d(x) · x
|x|2

)
udx ≥ 0, ∀ 0 ≤ u ∈ C∞0 (Ω).

Note that in the case where Ω = Bc
R(0) then inequality (4.1.2) becomes equality. Also note that in the case where Ω is

the exterior of ellipse then assumption (4.1.2) is not satisfied.

First, let us show that the inequality (4.1.2) becomes equality if and only if K is a ball centered at zero.

Lemma 4.1.1. Assume that 0 ∈ K, where K has smooth enough boundary. Assume also that the following equality

holds for each x ∈ ∂K

−∆d(x) + (n − 1)
∇d(x) · x
|x|2

= 0.

Then K is a ball centered at zero.

proof: Let x ∈ ∂K. By a rotation of coordinates, we map x to x̃ such that x̃ = (0, .., x̃n) and |x̃n| = |x|. Then the unit

outer normal is (0, .., 1) and −∆d = (n − 1)H(x) = (n − 1)H(x̃), since the mean curvature (H(x)) is invariant under the

change of coordinate system. Then we have

−∆d(x̃) + (n − 1)
∇d(x̃) · x̃
|x̃|2

= (n − 1)H(x̃) + (n − 1)
1
|x̃n|
⇔

H(x̃) = −
1
|x̃n|

= −
1
|x|

= H(x).

Returning now to the initial coordinate system we obtain that

−
1
|x|

+
∇d · x
|x|2

= 0⇔ ∇d · x = |x| ⇔ ∇d =
x
|x|
.

Since the x ∈ ∂K is arbitrary the last equality holds for each x ∈ ∂K. Thus K is a ball centered at zero. �
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Theorem 4.1.2. Let n ≥ 4 and Ω be an exterior domain not containing the origin which satisfies the condition (4.1.2).

Then the following inequality is valid.

(4.1.3)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω)

where the constant C > 0 depends only on Ω and dimension n.

proof: We set

u = |x|−
n−1

2 d
1
2 v,

then by straightforward calculations, we have∫
Ω

|∇u|2dx =

∫
Ω

d|∇v|2

|x|n−1 dx +
1
4

∫
Ω

|v|2

|x|n−1d
dx +

(n − 1)2

4

∫
Ω

d|v|2

|x|n
dx

−
n − 1

2

∫
Ω

∇d · x|v|2

|x|n+1 dx −
n − 1

2

∫
Ω

dx · ∇v2

|x|n+1 dx +
1
2

∫
Ω

∇d · ∇v2

|x|n−1 dx.

Also, we note that ∫
Ω

dx · ∇v2

|x|n+1 dx = −

∫
Ω

∇d · x|v|2

|x|n+1 dx +

∫
Ω

d|v|2

|x|n
dx,∫

Ω

∇d · ∇v2

|x|n−1 dx =

∫
Ω

(
− ∆d(x) + (n − 1)

∇d(x) · x
|x|2

) v2

|x|n−1 dx ≥ 0,

where in the last inequality we have used the condition (4.1.2). Taking into account the last calculations we have∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥
∫

Ω

d|∇v|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ω

d|v|2

|x|n+1 dx.

Thus by the above inequality it is enough to show that the following inequality is valid

(4.1.4)
∫

Ω

d|∇v|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ω

d|v|2

|x|n+1 dx ≥
( ∫

Ω

d
n

n−2 |v|
2n

n−2

|x|n
n−1
n−2

dx
) n−2

n

, ∀v ∈ C∞0 (Ω)

Now let Ωδ = {x ∈ Ω : d(x) ≤ δ} for some δ > 0 sufficiently small and Ωc
δ = Rn \Ωδ. Then note that

(4.1.5)
δ

ρ
≤

d
|x|
≤ 1 ∀ x ∈ Ωc

δ and ρ′ ≤ |x| ≤ ρ + δ ∀ x ∈ Ωδ

where ρ = sup{|x| : x ∈ ∂Ω} and ρ′ = inf{|x| : x ∈ ∂Ω}. To prove inequality (4.1.4), we need to define cutoff functions

supported near to the boundary. Let a(t) ∈ C∞([0,∞)) be a nondecreasing function such that a(t) = 1 for t ∈ [0, 1
2 ),

a(t) = 0 for t ≥ 1 and a′(t) ≤ C0. For δ small we define φδ(x) := a( d(x)
δ

) ∈ C1,1(Ω). Note that φδ = 1 on Ω δ
2
, φδ = 0 on

Ωc
δ and |∇φδ| = |a′(

d(x)
δ

)| |∇d|
δ
≤

C0
δ

with C0 a universal constant.
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By (4.1.5) and then Sobolev inequality we have∫
Ωc

δ
2

d|∇((1 − φδ)v)|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ωc

δ
2

d|(1 − φd)v|2

|x|n+1 dx

≥ c(δ, ρ)
( ∫

Ωc
δ
2

|∇((1 − φδ)v)|2

|x|n−2 dx +
(n − 1)(n − 3)

4

∫
Ωc

δ
2

|(1 − φδ)v|2

|x|n
dx

)

≥ C(δ, ρ)
( ∫

Ωc
δ
2

|(1 − φδ)v|
2n

n−2

|x|n
dx

) n−2
n

≥ C(δ, ρ)
( ∫

Ωc
δ

d
n

n−2 |(1 − φδ)v|
2n

n−2

|x|n
n−1
n−2

dx
) n−2

n

,(4.1.6)

where in the last inequality we have used again (4.1.5) and the fact that Ωc
δ ⊂ Ωc

δ
2
.

Now by Theorem 2.4 in [FMaT1] and (4.1.5) for sufficiently small δ > 0 we have∫
Ωδ

d|∇(φδv)|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ωδ

d|φδv|2

|x|n+1 dx

≥ C(δ, ρ, ρ′)
( ∫

Ωδ

d
n

n−2 |φδv|
2n

n−2

|x|
n(n−1)

n−2

dx
) n−2

n

.(4.1.7)

We add (4.1.6) and (4.1.7) to obtain

C(δ, ρ, ρ′)
( ∫

Ωδ

d
n

n−2 |φδv|
2n

n−2

|x|
n(n−1)

n−2

dx
) n−2

n

+ C(δ, ρ)
( ∫

Ωc
δ

d
n

n−2 |(1 − φδ)v|
2n

n−2

|x|
n(n−1)

n−2

dx
) n−2

n

≤

∫
Ωδ

d|∇(φδv)|2

|x|n−1 dx +

∫
Ωc

δ
2

d|∇((1 − φδ)v)|2

|x|n−1 dx + 2
(n − 1)(n − 3)

4

∫
Ω

d|v|2

|x|n+1 dx

(4.1.8) ≤ C′
( ∫

Ωδ\Ω δ
2

dv2

|x|n−1 dx
)

+ C(n)
( ∫

Ω

d|∇(v)|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ω

d|v|2

|x|n+1 dx
)
,

where in the last inequality we have use the fact that ∇φδ , 0 only for any x ∈ Ωδ \Ω δ
2
.

Thus in view of (4.1.8), to complete the proof of theorem we need the following inequality

(4.1.9)
∫

Ωδ\Ω δ
2

dv2

|x|n−1 dx ≤ C
( ∫

Ω

d|∇v|2

|x|n−1 dx +
(n − 1)(n − 3)

4

∫
Ω

d|v|2

|x|n+1 dx
)
.

The last inequality is simple to prove because by (4.1.5) we have∫
Ωδ\Ω δ

2

dv2

|x|n−1 dx ≤ (ρ + δ)2
( ∫

Ωδ\Ω δ
2

dv2

|x|n+1 dx
)
.

�

The case n = 3 is different, as we can see from the following Theorem.

Theorem 4.1.3. Let n = 3 and Ω be an exterior domain not containing the origin and satisfies the condition (4.1.2)
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with strictly inequality i.e.

(4.1.10) − ∆d(x) + 2
∇d(x) · x
|x|2

� 0.

Then the following inequality is valid.

(4.1.11)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C
( ∫

Ω

X4(
|x|
D

)u6dx
) 1

3

, ∀ u ∈ C∞c (Ω)

where X(t) = (1 + ln t)−1, 0 < D < inf{|x| : x ∈ ∂Ω} and the constant C > 0 depends only on Ω. Moreover, the power

4 on X can not be replaced by a smaller power.

The condition 4.1.10 is equivalent with the fact that there exists ε > 0 and a ball of radius ρ > 0 with center at x0 and

Bρ(x0) ⊂ Ω such that∫
Bρ(x0)

(
−∆d(x) + 2

∇d(x) · x
|x|2

dx
)

udx ≥ ε
∫

Bρ(x0)
udx, ∀ 0 ≤ u ∈ C∞0 (Bρ(x0)).

To prove Theorem 4.1.3 we need the following Lemma.

Lemma 4.1.4. Let n ≥ 3 and Ω be an exterior domain not containing the origin. Then the following inequality is valid

(4.1.12)
∫

Ω

|∇u|2

|x|n−2 dx ≥ C
( ∫

Ω

u
2n

n−2

|x|n
X(
|x|
D

)
2(n−1)

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Ω)

where X(t) = 1
1+ln(t) , 0 < D < infx∈∂Ω |x| and C > 0 depends only on Ω and n. Moreover, the power 2(n−1)

n−2 on X can not

be replaced by a smaller power.

To prove Lemma 4.1.4 we need the following lemma which the proof is in [Ma].

Lemma 4.1.5. Let A(r), B(r) nonnegative functions. Such that 1/A(r), B(r) are integrable in (0, r) and (r,∞), respec-

tively, for all positive r < ∞. Then, for q ≥ 2 the Sobolev inequality

(4.1.13)
[ ∫ s

0
B(t)|u(t) − u(0)|qdt

] 1
q

≤ C
[ ∫ s

0
A(t)|u′(t)|2dt

] 1
2

,

is valid for all u ∈ C1[0, s] such that u(s) = 0 (or vanish near infinity, if s = ∞), if and only if

(4.1.14) K = sup
r∈(0,s)

[ ∫ s

r
B(t)dt

] 1
q
[ ∫ r

0
(A(t))−1dt

] 1
2

be finite. The best constant in (4.1.13) satisfies the following inequality

(4.1.15) K ≤ C ≤ K
( q
q − 1

) 1
2

q
1
q .

proof of Lemma 4.1.4: First we assume that u is a radially symmetric function. Then inequality (4.1.12) is equivalent

to

(4.1.16)
∫ ∞

ρ

r|ur |
2dr ≥ C

( ∫ ∞

ρ

|u|
2n

n−2

r
X(

r
D

)
2(n−1)

n−2 dr
) n−2

n

,
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where ρ = infx∈∂Ω |x|. We note that the last inequality is valid by Lemma 4.1.5 for A(r) = r, B(r) =
X

2(n−1)
n−2 ( r

D )
r and

q = 2n
n−2 . Suppose first that ρ < 1. Following [VZ] we decompose u into spherical harmonics (since u ∈ (Bc

ρ(0))) to get

u(x) =

∞∑
m=0

um(r) fm(σ),

where fm are orthogonal in L2(S n−1) normalized by 1
nwn

∫
S n−1 fm(σ) fn(σ)dS = δmn. In particular f0(σ) = 1 and the first

term in the above decomposition is given by

u0(r) =
1

nwnrn−1

∫
∂Br

u(x)dS x.

The fm’s are eigenfunctions of the Laplace-Beltrami operator (∇σ) with corresponding eigenvalues cm = m(n − 2 + m),

m ≥ 0. An easy calculation shows that,

(4.1.17)
∫

Bc
1

|∇u|2dx =

∞∑
m=0

∫
Bc

1

|∇um|
2

|x|n−2 dx +

∞∑
m=0

cm

∫
Bc

1

u2
m

|x|n
dx,

Now note that

∞∑
m=1

∫
Bc

1

|∇um|
2

|x|n−2 dx +

∞∑
m=1

cm

∫
Bc

1

u2
m

|x|n
dx ≥

1
2

( ∫
Bc

1

|∇(u − u0)|2

|x|n−2 dx +

∫
Bc

1

|u − u0|
2

|x|n
dx

)
≥ C

( ∫
Bc

1

X
2(n−1)

n−2 (|x|)
|u − u0|

2n
n−2

|x|n
dx

) n−2
n

,(4.1.18)

Also, since u0 is radially symmetric we have by (4.1.16), that u0 satisfies

(4.1.19)
∫

Bc
1

|∇u0|
2

|x|n−2 dx ≥ C
( ∫

Bc
1

|u0|
2n

n−2

|x|n
X(
|x|
D

)
2(n−1)

n−2 dx
) n−2

n

,

thus by (4.1.18) and (4.1.19) the proof is complete. �

proof of Theorem 4.1.3: We set

u = |x|−1d
1
2 v

as in Theorem 4.1.2, then the inequality (4.1.11) becomes equivalent to

(4.1.20)
∫

Ω

d|∇v|2

|x|2
dx +

∫
Ω

(
− ∆d(x) + 2

∇d(x) · x
|x|2

) v2

|x|2
dx ≥ C

( ∫
Ω

d3X4( |x|D )|v|6

|x|6
dx

) 1
3

.

To prove (4.1.20) we need the cutoff (φδ) which we used in Theorem 4.1.2. Also we recall that Ωδ = {x ∈ Ω : d(x) ≤ δ}

for some δ > 0 sufficiently small and Ωc
δ = Rn \Ωδ. Then note that

(4.1.21)
δ

ρ
≤

d
|x|
≤ 1 ∀ x ∈ Ωc

δ and ρ′ ≤ |x| ≤ ρ + δ ∀ x ∈ Ωδ

where ρ = sup{|x| : x ∈ ∂Ω} and ρ′ = inf{|x| : x ∈ ∂Ω}. Then by Theorem 2.4 in [FMaT1], Lemma 4.1.4, (4.1.10) and

(4.1.21) the following inequalities are valid

∫
Ωδ

d|∇(φδv)|2

|x|2
dx +

∫
Ωδ

(
− ∆d(x) + 2

∇d(x) · x
|x|2

)
|φδv|2

|x|2
dx ≥ C(δ, ρ, ρ′)

( ∫
Ωδ

d3X4( |x|D )|φδv|6

|x|6
dx

) 1
3

,
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∫
Ωc

δ
2

d|∇(1 − φδ)v|2

|x|2
dx +

∫
Ωc

δ
2

(
− ∆d(x) + 2

∇d(x) · x
|x|2

)
|(1 − φδ)v|2

|x|2
dx

≥ C(δ, ρ)
( ∫

Ωc
δ
2

|(1 − φδ)v|6

|x|3
X(
|x|
D

)4dx
) 1

3

,(4.1.22)

Now by (4.1.10) there exists ε > 0 and a ball radius ρ > 0 with center x0 and Bρ(x0) ⊂ Ω such that∫
Bρ(x0)

(
−∆d(x) + 2

∇d(x) · x
|x|2

dx
)

udx ≥ ε
∫

Bρ(x0)
udx, ∀ 0 ≤ u ∈ C∞0 (Bρ(x0)).

Consider now η ∈ C∞0 (Bρ(0)), 0 ≤ η ≤ 1 and η(x) = 1 in B ρ
2

Also consider a BR(0) ⊃⊃ Ωc such that Bρ(x0) ⊂ BR(0).

Then we have ∫
BR(0)

(
−∆d(x) + 2

∇d(x) · x
|x|2

dx
)

v2dx ≥

∫
BR(0)

(
−∆d(x) + 2

∇d(x) · x
|x|2

dx
)

v2dx

≥

∫
Bρ(x0)

(
−∆d(x) + 2

∇d(x) · x
|x|2

dx
)
ηv2dx

≥ ε

∫
Bρ(x0)

ηv2dx

≥ ε

∫
B ρ

2
(x0)

v2dx(4.1.23)

Now in view of Theorem 4.1.2 and (4.1.23), we only need to show the following inequality

(4.1.24)
∫

Ωδ\Ω δ
2

dv2

|x|n−1 dx ≤ C′
( ∫

Ω

d|∇v|2

|x|n−1 dx + ε

∫
B ρ

2
(x0)

v2

|x|n−1 dx
)
dx,

We will prove inequality (4.1.24) by contradiction. Specifically, we will prove that the following inequality is valid

(4.1.25)
∫

Br(0)\Ω δ
2

v2dx ≤ C′
( ∫

Br\Ω δ
2

|∇v|2dx + ε

∫
BR(0)

v2dx
)
,

where Br is a ball radius r such that BR(0) ⊂ Br(0) and Ωδ ⊂ Br. Where the stated estimate false, there would exist for

each integer k = 1, ... a function vk ∈ H1 satisfying∫
Br(0)\Ω δ

2

v2
kdx ≥ k

∫
Br(0)\Ω δ

2

|∇vk |
2dx + ε

∫
B ρ

2
(x0)

v2
kdx.

We re-normalize vk such that

(4.1.26)
∫

Br(0)\Ω δ
2

v2
kdx = 1,

which implies

(4.1.27)
∫

Br\Ω δ
2

|∇vk |
2dx + ε

∫
B ρ

2
(x0)

v2
kdx ≤

1
k
.

In particular the functions {uk} are bounded in H1. Thus by Rellich-Kondrachov Theorem, there exists a subsequence
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{vk j } ⊂ {vk} and a function v ∈ L2 such that

vk j → v, in L2.

But then

(4.1.28)
∫

Br(0)\Ω δ
2

v2dx = 1.

On the other hand by (4.1.27) we have that Dv = 0 a.e and v = 0 a.e in B ρ
2
(x0) which implies that v = 0 a.e in

Br(0) \Ω δ
2
. Where we have clearly a contradiction by (4.1.28). �

4.1.2 Examples Where we have not Hardy or Hardy-Sobolev Inequality for n = 2 and n = 3

In this subsection we will give some examples where Hardy and Hardy-Sobolev inequality is not valid in R2 and R3

respectively.

Example 1 Consider the set Ka = {−a ≤ x ≤ a} for some positive constant a. Then, there does not exist constant

c > 0, such that the following inequality to be valid∫
R2\Ka

|∇u|2dx − c
∫
R2\Ka

u2

d2 dx ≥ 0, ∀u ∈ C∞0 (R2 \ K)

where d(x) = inf{|x − y| : y ∈ Ka, x ∈ R2}.

proof: We will show it by contradiction. We assume that R2 \ Ka has the Hardy property, that is, there exist a positive

constant c such that

(4.1.29)
∫
R2\Ka

|∇u|2dx ≥ c
∫
R2\Ka

u2

d2 dx, ∀u ∈ C∞0 (R2 \ Ka).

Now set u(x) = v(x̃), where x̃ = x
a . Then d(x) = ad(x̃) (where d(x̃) = inf{|x − y| : y ∈ K1, x ∈ R2}) and ∇xu = ∇x̃v

a .

Then inequality (4.1.29) becomes equivalent to

(4.1.30)
∫
R2\K1

|∇v|2dx̃ ≥ c
∫
R2\K1

v2

d2 dx̃, ∀v ∈ C∞0 (R2 \ K1).

By (4.1.30) we obtain that the constant c is independent on a. Next in (4.1.29), send a at zero to obtain that∫
R2\{0}

|∇u|2dx ≥ c
∫
R2\{0}

u2

d2 dx, ∀u ∈ C∞0 (R2 \ {0}).

Which is clearly a contradiction, since the Hardy inequality in R2 is not valid. �

Example 2 There does not exist constant 0 < c ≤ 1
4 such that

(4.1.31)
∫

Bc
1

|∇u|2dx − c
∫

Bc
1

u2

d2 dx ≥ 0, ∀ u ∈ C∞0 (R2 \ B1),

where d = |x| − 1.

proof: We will show it by contradiction. We assume that there exists a constant 0 < c ≤ 1
4 such that (4.1.31) is valid.
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We set u =
(r−1)

1
2

r
1
2

v, where

v(r) =

{ r − 1 , 1 < r ≤ 2

2εr−ε , 2 < r.

Observe that u ∈ D1,2
0 (Bc

1). Then by straightforward calculations in 4.1.31, we have

(4.1.32)
∫

Bc
1

d|∇v|2

|x|
dx −

1
4

∫
Bc

1

d|v|2

|x|3
dx + (

1
4
− c)

∫
Bc

1

|v|2

d|x|
dx ≥ 0.

Now note that

(4.1.33)
∫

Bc
2

d|∇v|2

|x|
dx = 2πε2(

2−2ε

2ε
−

2−2ε−1

2ε + 1
),

(4.1.34)
∫

Bc
2

d|v|2

|x|3
dx = 2π(

2−2ε

2ε
−
−2ε − 1
2ε + 1

)

and

(4.1.35)
∫

Bc
2

|v|2

d|x|
dx ≤

π

ε
.

But,

lim
ε→0

(
1
4
− c)

1
2ε
−

1
4

2−2ε

2ε
= −∞,

which is a contradiction by (4.1.32), (4.1.33), (4.1.34), (4.1.35). �

Finally, we will show that on the exterior of a unit ball in R3, Hardy-Sobolev inequality does not hold.

Example 3 There is not any constant c > 0 such that the following inequality to be valid,

(4.1.36)
∫

Bc
1

|∇u|2dx −
1
4

∫
Bc

1

u2

d2 dx ≥ c
( ∫

Bc
1

u6Xa(|x|)dx
) n−2

n

,

where d = |x| − 1, X(t) = (1 + ln(t))−1 and a > 1.

proof: We will show it by contradiction. We assume that there exists c > 0 such that (4.1.36) is valid. We set

u =
(r−1)

1
2

r v, where

v(r) =

{ (r − 1)ε , 1 < r ≤ 2

2εr−ε , 2 < r.

Observe that u ∈ D1,2
0 (Bc

1). Then by straightforward calculations in 4.1.36, we have

(4.1.37)
∫

Bc
1

d|∇v|2

|x|2
dx ≥ c

( ∫
Bc

1

d3v6Xa(|x|)
|x|6

dx
) 1

3

.

Now note that,

(4.1.38)
∫

B2

d|∇v|2

|x|2
dx = c1ε,
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(4.1.39)
∫

Bc
2

d|∇v|2

|x|2
dx = c12−2εε,

(4.1.40)
∫

B2

d3v6Xa(|x|)
|x|6

dx ≥
c2

4 + 6ε
,

and

(4.1.41)
∫

Bc
2

d3v6Xa(|x|)
|x|6

dx =

∫ ∞

2

(r − 1)3r−6εXa(r)
r4 dr.

Letting ε→ 0, by (4.1.37), (4.1.38), (4.1.39), (4.1.40) and (4.1.41) we have clearly a contradiction. �

4.1.3 Hardy Inequalities in Exterior Domain General Case

In this subsection we will prove Hardy-Sobolev type inequalities without the assumption of (4.1.2). Before we prove

the Hardy-Soblolev inequality, we need a theorem for the following space:

Definition 4.1.6. Let n ≥ 3 and Ω be an exterior domain not containing the origin. We denote by D1,2
0 (Ω; |x|) the

completion of C∞0 (Ω) function under the norm

(4.1.42) ||u||2
D

1,2
0 (Ω;|x|)

=

∫
Ω

|∇u|2

|x|n−2 dx +

∫
Ω

u2

(1 + |x|2+σ)|x|n−2 dx,

where σ is a non-negative constant.

Also, we denote by D1,2(Ω; |x|) the completion of C∞(Ω) with compact support at infinity under the norm (4.1.42).

Theorem 4.1.7. Let Ω be a exterior domain not containing the origin. Select an exterior domain V such that Ω ⊂ V.

Then for each u ∈ D1,2(Ω; |x|) there exists a function ũ ∈ D1,2
0 (V; |x|) such that

(i) |u| ≤ |̃u| ≤ (N + 1)u a.e in Ω

(ii) ũ has support in V

and

(iii) ||̃u||2
D

1,2
0 (V;|x|)

≤ C||u||2
D

1,2
0 (Ω;|x|)

where the constant N depends on ∂Ω and constant C depends only on n, Ω, N, σ and V.

proof: Let r0 = infx∈∂Ω |x| and R0 = supx∈∂Ω |x|. Fix x ∈ ∂Ω, then there exists a r < r0
4 and a C1 function γ : Rn−1 → R

such that (upon relabeling and reorienting the coordinates axes if necessary) we have

Ω ∩ B(x, r) = {x ∈ B(x, r) : xn > γ(x′)}.

Then we define yi = xi =: Φi(x) for i = 1, ..., n − 1 and yn = xn − γ(x′) = Φn(x). Similarly we set xi = yi =: Y i(y) for

i = 1, ..., n − 1 and xn = yn + γ(y′) =: Yn(y).

Then Φ = Y−1 and the mapping x → Φ(x) = y ”straightens out ∂Ω” near to x. Observe also detΦ = detY = 1. Now let

xi ∈ ∂Ω and fix ri small enough such that for the ball B(Φ(xi), r) = B(yi, r), we have that if x ∈ W i = Y(B(yi, r)) then
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|x| > 3r0
4 . Now, for u ∈ C∞(Ω) with compact support at infinity, we have

(4.1.43)
∫

W i

|∇u|2

|x|n−2 dx +

∫
W i

u2

(1 + |x|2+σ)|x|n−2 dx ≥
1

(R0)n−2(1 + R2+σ)

( ∫
W i
|∇u|2dx +

∫
W i

u2dx
)
.

Now set u′(y) = u(Y(y)), B+ = B(yi) ∩ {yn ≥ 0} and B− = B(yi) ∩ {yn ≤ 0}. We define

ũ(y) =

{ u′(y) for y ∈ B+

−3u′(y′,−yn) + 4u′(y′, −yn
2 ) for y ∈ B−.

Then ũ ∈ C1(B). To check this let us write u+ = ũ|B+ and u− = ũ|B− . We demonstrate first

u−yn
= u+

yn
on {yn = 0}.

Now since u−(y′, 0) = u+(y′, 0) we have

u−yi
= u+

yi
on {yn = 0} for, i = 1, ..., n − 1.

Thus we have ∫
B
|∇ũ|2dy +

∫
B
|̃u|2dy ≤ C

( ∫
B+

|∇u′|2dy +

∫
B+

|u′|2dy
)
.

Now since c1|∇xu| ≤ |∇yu| ≤ c2|∇xu| for some constants c1, c2 which depend on γ, we have∫
W i
|∇ũ|2dx +

∫
W i
|̃u|2dx ≤ C

( ∫
Y(B+)

|∇u|2dx +

∫
Y(B+)

|u|2dx
)
⇒

(
min{

3r0

4
, 1}

)n−2 (
1 + (

r0

4
)2+σ

) ( ∫
W i

|∇ũ|2

|x|n−2 dx +

∫
W i

|̃u|2

|x|n−2(1 + |x|2+σ)
dx

)

(4.1.44) ≤ Rn−2
0

(
1 + R2+σ

0

)
C
( ∫

Y(B+)

|∇u|2

|x|n−2 dx +

∫
Y(B+)

|u|2

|x|n−2(1 + |x|2+σ)
dx

)
,

where we have use the fact that |x| > 3r0
4 and (4.1.43).

Since ∂Ω is compact, there exist finitely many points xi ∈ ∂Ω, open sets W i and extensions ũi of u to W i (i = 1, ...,N),

as above, such that ∂Ω ⊂
⋃N

i=1 W i. Take W
0

= B4R0 \Ω
c and let {ζi}

N
i=0 be an associates partition of unity of (B2R0 \Ω

c)∪⋃N
i=1 W i ⊂

⋃N
i=0 W i. Consider now the C1 function a(t) = 1 if t ≤ 1 and a(t) = 0 if t ≥ 2 and set ζN+1 = 1 − a( t

R ).

Write ũ :=
∑N+1

i=0 ζiũi, where ũ0 = u and ũN+1 = u. Then utilizing estimate (4.1.44) (with ui in place u, ũi in place ũ) we

obtain the bound

(4.1.45) ||̃u||2
D

1,2
0 (U;|x|)

≤ C||u||2
D1,2(Ω;|x|),

where U = Ω ∪
⋃N

i=1 W i and C positive constant which depends only on Ω, n, N, σ but not on u. Furthermore we can

arrange for the support of ũ to lie within V ⊃ U. �

Remark: In view of the above Theorem we can prove by similar way that∫
Ω

|∇ũ|2

|x|n−2 dx +

∫
Ω

ũ2

(1 + |x|2+σ)|x|n−2 dx ≤ C(n,Ω)
∫

Ω

|∇u|2

|x|n−2 dx + C′(n,Ω, σ)
∫

Ω

u2

(1 + |x|2+σ)|x|n−2 dx.
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Theorem 4.1.8. Let n = 3, σ > 0 and Ω be an exterior set not containing the origin. Then there exist constants C(Ω)

and C′(Ω, σ) such that the following inequality is valid,

(4.1.46)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

X4(
|x|
ρ

)u6dx
) 1

3

, ∀u ∈ C∞c (Ω)

where X(t) = (1 + ln t)−1, ρ = inf{|x| : x ∈ ∂Ω}. Moreover, the power 4 on X can not be replaced by a smaller power.

proof: Let R0 = supx∈∂Ω |x| and η ∈ C2(Ω) such that η(x) = d
1
2 (x) ∀x ∈ Ωε0 where ε0 is small enough, η(x) =

(|x|−2R0)
1
2

|x|

∀x ∈ Bc(0, 4R0) and c1 ≤ η ≤ c2 otherwise, where c1 and c2 are positive constants. Set u = ηv then we have∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx

=

∫
Ω

η2|∇v|2dx −
∫

Ω

(η∆η +
η2

4d2 )v2dx + C′
∫

Ω

η2v2

1 + d+2+σ
=

=

∫
Ωε0

η2|∇v|2dx −
∫

Ωε0

(η∆η +
η2

4d2 )v2dx + C′
∫

Ωε0

η2v2

1 + d2+σ
dx(4.1.47)

+

∫
B(0,4R0)\Ωc

η2|∇v|2dx −
∫

B(0,4R0)\Ωc
(η∆η +

η2

4d2 )v2dx + C′
∫

B(0,4R0)\Ωc

η2v2

1 + d2+σ
dx(4.1.48)

+

∫
Bc(0,4R0)

η2|∇v|2dx −
∫

Bc(0,4R0)
(η∆η +

η2

4d2 )v2dx + C′
∫

Bc(0,4R0)

η2v2

1 + d2+σ
dx(4.1.49)

= I1 + I2 + I3,(4.1.50)

where I1, I2 and I3 are the terms in (4.1.47), (4.1.48) and (4.1.49) respectively.

Now for I1 we have by Theorem 2.4 in [FMaT1]

I1 =

∫
Ωε0

d|∇v|2dx −
1
2

∫
Ωε0

∆dv2dx + C′
∫

Ωε0

dv2

1 + d2+σ
dx

≥ C
( ∫

Ωε0

d3v6dx
) 1

3

≥ C
( ∫

Ωε0

X4(
|x|
ρ

)η3v6dx
) 1

3

,(4.1.51)

where in the last inequality we have used the fact that 0 ≤ X(t) ≤ 1.

For I2 we first note

(4.1.52)
∫

B(0,4R0)\Ωc
η2|∇v|2dx ≥ c2

1

∫
B(0,4R0)\Ωc

|∇v|2dx,

(4.1.53) |

∫
B(0,4R0)\Ωc

(η∆η +
η2

4d2 )v2dx| ≤ C0

∫
B(0,4R0)\Ωc

v2dx,

(4.1.54) C′
∫

B(0,4R0)\Ωc

η2v2

1 + d2+σ
dx ≥

C′c2
1

1 + (4R)2+σ

∫
B(0,4R0)\Ωc

v2dx.
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Thus if we choose C′ ≥ 2C0(1+(4R)2+σ)
c2

1
we have by (4.1.52), (4.1.53), (4.1.54) and the Sobolev inequality

I2 ≥ C
(∫

B(0,4R0)\Ωc
|∇v|2dx +

∫
B(0,4R0)\Ωc

v2dx
)
≥ C

( ∫
B(0,4R0)\Ωc

v6dx
) 1

3

≥ C
( ∫

B(0,4R0)\Ωc
X4(
|x|
ρ

)η6v6dx
) 1

3

.(4.1.55)

For I3 first we note that

(4.1.56) −

∫
Bc(0,4R0)

(η∆η +
η2

4d2 )v2dx ≥ 0,

since d(x) ≥ |x| − 2R0 in Bc(0, 4R0). Also we note that 1
2 ≤

d
|x| ≤ 1 for each x ∈ Bc(0, 4R0).Thus we have by (4.1.56)

I3 ≥ C
( ∫

Bc(0,4R0)

|∇v|2

|x|
dx +

∫
Bc(0,4R0)

|v|2

|x|(1 + |x|2+σ)
dx

)
≥ C(Ω)

∫
Bc(0,2R0)

|∇̃v|2

|x|
dx + C′(Ω, σ)

∫
Bc(0,4R0)

|̃v|2

|x|(1 + |x|2+σ)
dx,(4.1.57)

where ṽ is the function as in Theorem 4.1.7 (see remark bellow). Thus since ṽ ∈ C1
c (Bc(0, 2R0)) we have by Lemma

4.1.4 ∫
Bc(0,2R0)

|∇̃v|2

|x|
dx ≥ C

( ∫
Bc(0,2R0)

X4(
|x|
ρ

)
ṽ6

|x|3
dx

) 1
3

≥ C
( ∫

Bc(0,4R0)
X4(
|x|
ρ

)
ṽ6

|x|3
dx

) 1
3

= C
( ∫

Bc(0,4R0)
X4(
|x|
ρ

)
v6

|x|3
dx

) 1
3

,(4.1.58)

where in the last inequality we have used the fact that ṽ = v ∀x ∈ Bc(0, 4R0). Thus by (4.1.56), (4.1.57) and (4.1.58)

we have

(4.1.59) I3 ≥ C
( ∫

Bc(0,4R0)
X4(
|x|
ρ

)η6v6dx
) 1

3

.

And the proof follows by (4.1.51), (4.1.55), (4.1.59) and (4.1.50) �

Theorem 4.1.9. Let n ≥ 4, σ > 0 and Ω be an exterior set not containing the origin. Then there exist constants C(Ω, n)

and C′(Ω, n, σ) such that the following inequality is valid,

(4.1.60)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx ≥ C

( ∫
Ω

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞c (Ω).

proof: Let R0 = supx∈∂Ω |x| and η ∈ C2(Ω) such that η(x) = d
1
2 (x) ∀x ∈ Ωε0 where ε0 is small enough, η(x) =

(|x|−2R0)
1
2

|x|
n−1

2
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∀x ∈ Bc(0, 4R0) and c1 ≤ η ≤ c2 otherwise, where c1 and c2 are positive constants. Set u = ηv then we have∫
Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx + C′
∫

Ω

u2

1 + d2+σ
dx

=

∫
Ω

η2|∇v|2dx −
∫

Ω

(η∆η +
η2

4d2 )v2dx + C′
∫

Ω

η2v2

1 + d+2+σ
dx

=

∫
Ωε0

η2|∇v|2dx −
∫

Ωε0

(η∆η +
η2

4d2 )v2dx + C′
∫

Ωε0

η2v2

1 + d2+σ
dx(4.1.61)

+

∫
B(0,4R0)\Ωc

η2|∇v|2dx −
∫

B(0,4R0)\Ωc
(η∆η +

η2

4d2 )v2dx + C′
∫

B(0,4R0)\Ωc

η2v2

1 + d2+σ
dx(4.1.62)

+

∫
Bc(0,4R0)

η2|∇v|2dx −
∫

Bc(0,4R0)
(η∆η +

η2

4d2 )v2dx + C′
∫

Bc(0,4R0)

η2v2

1 + d2+σ
dx(4.1.63)

= I1 + I2 + I3,(4.1.64)

where I1, I2 and I3 are the terms in (4.1.61), (4.1.62) and (4.1.63) respectively.

Now for I1 we have by Theorem 2.4 in [FMaT1]

I1 =

∫
Ωε0

d|∇v|2dx −
1
2

∫
Ωε0

∆dv2dx + C′
∫

Ωε0

dv2

1 + d2+σ
dx

≥ C
( ∫

Ωε0

d
n

n−2 |v|
2n

n−2 dx
) n−2

n

≥ C
( ∫

Ωε0

η
2n

n−2 |v|
2n

n−2 dx
) n−2

n

.(4.1.65)

For I2 we first note

(4.1.66)
∫

B(0,4R0)\Ωc
η2|∇v|2dx ≥ c2

1

∫
B(0,4R0)\Ωc

|∇v|2dx,

(4.1.67) |

∫
B(0,4R0)\Ωc

(η∆η +
η2

4d2 )v2dx| ≤ C0

∫
B(0,4R0)\Ωc

v2dx,

(4.1.68) C′
∫

B(0,4R0)\Ωc

η2v2

1 + d2+σ
dx ≥

C′c2
1

1 + (4R)2+σ

∫
B(0,4R0)\Ωc

v2dx.

Thus if we choose C′ ≥ 2C0(1+(4R)2+σ)
c2

1
we have by (4.1.66), (4.1.67), (4.1.68) and the Sobolev inequality

I2 ≥ C(
∫

B(0,4R0)\Ωc
|∇v|2dx +

∫
B(0,4R0)\Ωc

v2dx) ≥ C
( ∫

B(0,4R0)\Ωc
|v|

2n
n−2 dx

) n−2
2n

≥ C
( ∫

B(0,4R0)\Ωc
η

2n
n−2 |v|

2n
n−2 dx

) n−2
2n

.(4.1.69)

For I3 first we note that

(4.1.70) −

∫
Bc(0,4R0)

(η∆η +
η2

4d2 )v2dx ≥
(n − 1)(n − 3)

4

∫
Bc(0,4R0)

(|x| − 2R0)v2

|x|n+1 dx,
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since d(x) ≥ |x| − 2R0 in Bc(0, 4R0). Also we note that 1
2 ≤

d
|x| ≤ 1 for each x ∈ Bc(0, 4R0).Thus we have by (4.1.70)

I3 ≥ C
( ∫

Bc(0,4R0)

|∇v|2

|x|n−2 dx +
(n − 1)(n − 3)

4

∫
Bc(0,4R0)

v2

|x|n
dx

)
≥ C′

( ∫
Bc(0,2R0)

|∇̃v|2

|x|n−2 dx +
(n − 1)(n − 3)

4

∫
Bc(0,4R0)

ṽ2

|x|n
dx

)
,(4.1.71)

where ṽ is the function as in Theorem 4.1.7. Thus since ṽ ∈ C1
c (Bc(0, 2R0)) we have by Sobolev inequality

∫
Bc(0,2R0)

|∇̃v|2

|x|n−2 dx +
(n − 1)(n − 3)

4

∫
Bc(0,4R0)

ṽ2

|x|n+1 dx ≥ C
( ∫

Bc(0,2R0)

|̃v|
2n

n−2

|x|n
dx

) n−2
n

≥ C
( ∫

Bc(0,4R0)

|̃v|
2n

n−2

|x|n
dx

) n−2
n

= C
( ∫

Bc(0,4R0)

|v|
2n

n−2

|x|n
dx

) n−2
n

,(4.1.72)

where in the last equality we have used the fact that ṽ = v ∀x ∈ Bc(0, 4R0). Thus by (4.1.70), (4.1.71) and (4.1.72) we

have

(4.1.73) I3 ≥ C
( ∫

Bc(0,4R0)
|η|

2n
n−2 |v|

2n
n−2 dx

) n−2
2n

.

And the proof follows by (4.1.65), (4.1.69), (4.1.73) and (4.1.64) �

Finally, we will prove two theorems which are useful for the next subsection.

Lemma 4.1.10. Let n ≥ 4 and Ω be an exterior domain. Then the following inequality is valid

(4.1.74)
∫

Ω

|∇u|2

|x|2an
dx ≥ C

( ∫
Ω

|u|
2n

n−2

|x|
2ann
n−2

dx
) n−2

n

, ∀u ∈ C∞0 (Ω)

where an = n−2
2 +

√
(n−2)2

4 − 1
4 , C > 0 depends only on Ω and n.

proof: As in Lemma 4.1.4, we only need to show the inequality for radially symmetric functions. Thus, let u be a

symmetric function then inequality becomes equivalent to

∫ ∞

ρ

u2
r

r2βn−1 dr ≥ C
( ∫ ∞

ρ

|u|
2n

n−2

r1+
2nβn
n−2

dr
) n−2

n

,

where ρ = infx∈∂Ω |x| and βn =

√
(n−2)2

4 − 1
4 . And the lemma follows by Lemma 4.1.5 with A(r) = 1

r2βn−1 and B(r) =

1

r1+
2nβn
n−2
. �

Theorem 4.1.11. Let n ≥ 4 and Ω be an exterior domain not containing the origin. Then the following inequality is

valid

(4.1.75)
∫

Ω

d
|x|2an+1 (|∇u|2 +

u2

1 + d2+σ
)dx ≥ C

( ∫
Ωc

d
n

n−2 u
2n

n−2

|x|(2an+1) n
n−2

dx
) n−2

n

∀u ∈ C∞0 (Ω),

where an = n−2
2 +

√
(n−2)2

4 − 1
4 .
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proof: Let Ωδ = {x ∈ Ω : d(x) ≤ δ} for some δ > 0 sufficiently small and Ωc
δ = Rn \Ωδ. Then note that

(4.1.76)
δ

ρ
≤

d
|x|
≤ 1 ∀ x ∈ Ωc

δ and ρ′ ≤ |x| ≤ ρ + δ ∀ x ∈ Ωδ,

where ρ = sup{|x| : x ∈ ∂Ω} and ρ′ = inf{|x| : x ∈ ∂Ω} To prove inequality (4.1.75), we need to define cutoff functions

supported near to the boundary. Let a(t) ∈ C∞([0,∞)) be a nondecreasing function such that a(t) = 1 for t ∈ [0, 1
2 ),

a(t) = 0 for t ≥ 1 and a′(t) ≤ C0. For δ small we define φδ(x) := a( d(x)
δ

) ∈ C1,1(Ω). Note that φδ = 1 on Ω δ
2
, φδ = 0 on

Ωc
δ and |∇φδ| = |a′(

d(x)
δ

)| |∇d|
δ
≤

C0
δ

with C0 a universal constant.

By (4.1.76) we have∫
Ωc

δ
2

d|∇((1 − φδ)v)|2

|x|1+2an
dx +

∫
Ωc

δ
2

d|(1 − φd)v|2

|x|2an+1(1 + d2+σ)
dx ≥ C(δ, ρ)

( ∫
Ωc

δ
2

|∇((1 − φδ)v)|2

|x|2an
dx

)

≥ C(δ, ρ)
( ∫

Ωc
δ
2

|(1 − φδ)v|
2n

n−2

|x|
2nan
n−2

dx
) n−2

n

≥ C(δ, ρ)
( ∫

Ωc
δ

d
n

n−2 |(1 − φδ)v|
2n

n−2

|x|(1+2an) n
n−2

dx
) n−2

n

,(4.1.77)

where in the last inequality we have used again (4.1.76) and the fact that Ωc
δ ⊂ Ωc

δ
2
.

Now by Theorem 2.4 in [FMaT1] and (4.1.76) for sufficiently small δ > 0 we have∫
Ωc

δ
2

d|∇((1 − φδ)v)|2

|x|1+2an
dx +

∫
Ωc

δ
2

d|(1 − φd)v|2

|x|1+2an (1 + d2+σ)
dx

≥ C(δ, ρ, ρ′)
( ∫

Ωδ

d
n

n−2 |φδv|
2n

n−2

|x|(1+2an) n
n−2

dx
) n−2

n

.(4.1.78)

Now we add (4.1.77) and (4.1.78) to obtain

C(δ, ρ, ρ′)
( ∫

Ωδ

d
n

n−2 |φδv|
2n

n−2

|x|(1+2an) n
n−2

dx
) n−2

n

+ C(δ, ρ)
( ∫

Ωc
δ

d
n

n−2 |(1 − φδ)v|
2n

n−2

|x|(1+2an) n
n−2

dx
) n−2

n

≤

∫
Ωδ

d|∇(φδv)|2

|x|1+2an
dx +

∫
Ωc

δ
2

d|∇((1 − φδ)v)|2

|x|1+2an
dx + 2

∫
Ω

d|v|2

|x|1+2an (1 + d2+σ)
dx

(4.1.79) ≤ C′
( ∫

Ωδ\Ω δ
2

dv2

|x|1+2an
dx

)
+ C(n)

( ∫
Ω

d|∇v|2

|x|1+2an
dx +

∫
Ω

d|v|2

|x|1+2an (1 + d2+σ)
dx

)
,

where in the last inequality we have used the fact that ∇φδ , 0 only ∀x ∈ Ωδ \Ω δ
2
.

In view of (4.1.79), it suffices to prove

(4.1.80)
∫

Ωδ\Ω δ
2

dv2

|x|1+2an
dx ≤ C

( ∫
Ω

d|∇(v)|2

|x|1+2an
dx +

∫
Ω

d|v|2

|x|1+2an (1 + d2+σ)
dx

)
.

However this follows because by (4.1.76) we have∫
Ωδ\Ω δ

2

dv2

|x|1+2an
dx ≤ (1 + δ)2+σ

( ∫
Ωδ\Ω δ

2

dv2

|x|1+2an (1 + d2+σ)
dx

)
.
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�

Theorem 4.1.12. Let n=3 and Ω be an exterior domain not containing the origin. Then the following inequality is

valid ∫
Ω

d
|x|2

(|∇u|2 +
u2

1 + d2+σ
)dx ≥ C

( ∫
Ω

d3u6X4( |x|
ρ

)

|x|3
dx

) 1
3

, ∀u ∈ C∞0 (Ω)

where X(t) = (1 + ln t)−1. Moreover, the power 4 on X can not be replaced by a smaller power.

proof: The proof of the theorem is the same as in Theorem 4.1.11. The only difference is that, we use here Lemma

4.1.4 instead of Lemma 4.1.10. �

4.1.4 Existence of Minimizer in Suitable Spaces and Their Behavior

In this subsection, we assume the set Ω to be an exterior domain not containing the origin. By Theorems 4.1.9 (for

n = 3) and 4.1.8 (for n ≥ 4) we note that there exists a constant λ ∈ R such that

(4.1.81) −∞ < λ = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2 dx∫
Ω

u2

1+d2+σ dx
,

where σ > 0.

The main goal of this section is to prove the existence of a ground state function φ ∈ H1
loc(Ω) which solves the

corresponding Euler-Lagrange of 4.1.81 in the weak sense i.e.

(4.1.82) − ∆φ −
φ

4d2 = λ
φ

d2+σ
in Ω.

Also, we would like to know how this function φ behaves. The space which we use to prove the existence of φ is

D
1,2
0 (Ω; |x|, d) which is the closure of C∞0 (Ω) functions under the norm

||u||2
D

1,2
0 (Ω;|x|,d)

=

∫
Ω

d
|x|2an+1

(
|∇u|2 +

u2

1 + d2+σ

)
dx,

where an = n−2
2 +

√
(n−2)2

4 − 1
4 and σ > 0. By Theorems 4.1.12 and 4.1.11, we have for n = 3 and n ≥ 4 respectively

the following inequalities

(4.1.83) ||u||2
D

1,2
0 (Ω;|x|,d)

≥ C
( ∫

Ω

d3u6X4( |x|
ρ

)

|x|3
dx

) 1
3

, ∀u ∈ C∞0 (Ω),

where ρ = inf{|x| : x ∈ ∂Ω} and X(t) = (1 + ln t)−1.

(4.1.84) ||u||2
D

1,2
0 (Ω;|x|,d)

≥ C
( ∫

Ω

d
n

n−2 u
2n

n−2

|x|(2an+1) n
n−2

dx
) n−2

n

, ∀u ∈ C∞0 (Ω).

where an = n−2
2 +

√
(n−2)2

4 − 1
4 .

Theorem 4.1.13. Let n = 3 and let Ω be a exterior domain not containing the origin. Then there exists a ground state

function φ ∈ H1
loc(Ω) such that φ solves the problem (4.1.82) in the weak sense.

proof: Let η ∈ C2(Ω) be a function such that η(x) = d
1
2 (x) near the boundary, say, d(x) ≤ ε0, and η(x) = |x|−

1
2 away

from the boundary, say |x| > R > 2R0 = supx∈∂Ω and c1 ≤ η ≤ c2 otherwise, where c1, c2 are positive constants. Then
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||v||W1
0 (Ω;|x|,d) is equivalent with the norm

||v||2 =

∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx.

Also we have the following inequality

(4.1.85)
∫

Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx ≥ C

( ∫
Ω

η6v6X4(
|x|
ρ

)dx
) 1

3

,

by (4.1.83). Changing the variables by u = ηv in (4.1.81) we have the equivalent problem

(4.1.86) −∞ < λ = inf
v∈C∞0 (Ω)

∫
Ω
η2|∇v|2dx −

∫
Ω

(η∆η + 1
4
η2

d2 )v2dx∫
Ω

η2v2

1+d2+σ dx
.

For R and δ sufficiently large and small respectively we get∣∣∣∣∣ ∫
Ω

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣ =

∣∣∣∣∣ ∫
Bc

R

(η∆η +
1
4
η2

d2 )v2dx +

∫
BR\Ωδ

(η∆η +
1
4
η2

d2 )v2dx +

∫
Ωδ

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣

≤ |I1| + |I2| + |I3|

First we note for |x| > R > max{2R0, 1} that

η∆η +
1
4
η2

d2 =
1
4

(
1

d2|x|
−

1
|x|3

)
≤

2R0

4|x|2d2 =
R0

2
η2

|x|d2 .

Using the last inequality and the fact that 1
2 ≤

d
|x| ≤ 1 for |x| > 2R0, we have

|I1| ≤ C(R0)
∫

Bc
R

η2v2

|x|d2 dx ≤ C
( ∫

Bc
R

X4(
|x|
ρ

)η6|u|6dx
) 1

3
( ∫

Bc
R

X−2( |x|
ρ

)

|x|
9
2

dx
) 2

3

≤ C(R0, n)
1
R

∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx,(4.1.87)

where in the last two inequalities we have used Hölder inequality and inequality (4.1.85) respectively. Also since

η∆η + 1
4
η2

d2 ∈ L∞(Ω), we have

(4.1.88) |I2| ≤ C(δ)(R(1 + R)2+σ)
∫

BR\Ωδ

η2v2

(1 + d2+σ)
dx.

Finally,

|I3| ≤ C
δ

X1(δ)

∫
Ωδ

X1(δ)
δ

v2dx ≤ C
∫

Ωε0

X1(d)
d
|φε0 (d)v|2dx,

where X1(d) = (1 − ln d)−1 and φε0 (d) is the function as in Theorem 4.1.11.

But by [FMoT1]-Proposition 5.1 we have∫
Ωε0

X1(d)
d
|φε0 v|2dx ≤ C

∫
Ωε0

d(|∇(φε0 u)|2 + |φε0 u|2)dx,
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which implies

(4.1.89) |I3| ≤ C
δ

X1(δ)

( ∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx

)
.

Finally we combine the estimates (4.1.87), (4.1.88) and (4.1.89) to deduce that for any ε > 0 there exist Mε such that

(4.1.90)
∣∣∣∣∣ ∫

Ω

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣ ≤ ε∫

Ω

η2|∇v|2dx + Mε

∫
Ω

v2

1 + d2+σ
dx.

In the sequel we will establish the existence of a function ψ1 ∈ W1
0 (Ω; |x|, d) which realizes the infimum in (4.1.86). To

this end let wk be a minimizing sequence normalized by
∫

Ω

v2

1+d2+σ dx = 1. Then using (4.1.90) we can easily obtain (by

(4.1.86)) that the sequence wk is bounded i.e. supk ||wk || < N. Therefore there exist a subsequence still denoted by wk

such that it converges to W1
0 (Ω; |x|, d)−weakly to ψ1. Clearly by embedding theorems for R > 0 and δ > 0 large and

small enough respectively we have

(4.1.91)
∫

BR\Ωδ

(η∆η +
1
4
η2

d2 )w2
kdx→

∫
BR\Ωδ

(η∆η +
1
4
η2

d2 )ψ2
1dx.

Also, we have by (4.1.87)

(4.1.92)
∣∣∣∣∣ ∫

Bc
R

(η∆η +
1
4
η2

d2 )w2
kdx

∣∣∣∣∣ ≤ CN
1
R
.

By (4.1.89) we have

(4.1.93)
∣∣∣∣∣ ∫

Ωδ

(η∆η +
1
4
η2

d2 )w2
kdx

∣∣∣∣∣ ≤ ∫
Ωδ

η2w2
k

1 + d2+σ
dx ≤ CN

δ

X1(δ)
,

where X1(δ) = (1 − ln δ)−1. Using now (4.1.91), (4.1.92) and (4.1.93) we have∫
Ω

(η∆η +
1
4
η2

d2 )w2
kdx→

∫
Ω

(η∆η +
1
4
η2

d2 )ψ2
1dx

and the result follows by lower semicontinuity of the gradient term of numerator in (4.1.86). �

Theorem 4.1.14. Let n ≥ 4 and et Ω be an exterior domain not containing the origin. Then there exists a function

φ ∈ H1
loc(Ω) such that φ solves the problem (4.1.82) in the weak sense.

proof: Let η ∈ C2(Ω) be a function such that η(x) = d
1
2 (x) near the boundary, say, d(x) ≤ ε0, and η(x) = |x|−an away

from the boundary where an = n−2
2 +

√
(n−2)2

4 − 1
4 , say |x| > R > 2R0 = supx∈∂Ω and c1 ≤ η ≤ c2 otherwise, where c1, c2

are positive constants. Then ||v||W1
0 (W1

0 (Ω;|x|,d) is equivalent with the norm

||v||2 =

∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx.

Also we have the following inequality

(4.1.94)
∫

Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx ≥ C

( ∫
Ω

η
2n

n−2 |v|
2n

n−2 dx
) n−2

2n

,
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by (4.1.83). Changing the variables by u = ηv in (4.1.81) we have the equivalent problem

(4.1.95) −∞ < λ = inf
v∈C∞0 (Ω)

∫
Ω
η2|∇v|2dx −

∫
Ω

(η∆η + 1
4
η2

d2 )v2dx∫
Ω

η2v2

1+d2+σ dx
.

For R and δ sufficiently large and small respectively we get∣∣∣∣∣ ∫
Ω

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣ =

∣∣∣∣∣ ∫
Bc

R

(η∆η +
1
4
η2

d2 )v2dx +

∫
BR\Ωδ

(η∆η +
1
4
η2

d2 )v2dx +

∫
Ωδ

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣

≤ |I1| + |I2| + |I3|

First we note for |x| > R > max{2R0, 1} that

η∆η +
1
4
η2

d2 =
1
4

(
1

d2|x|2an
−

1
|x|2+2an

) ≤
2R0

4|x|1+2an d2 =
R0

2
η2

|x|d2 .

Using the last inequality and the fact that 1
2 ≤

d
|x| ≤ 1 for |x| > 2R0, we have

|I1| ≤ C(R0)
∫

Bc
R

η2v2

|x|d2 dx ≤ C
( ∫

Bc
R

η
2n

n−2 |u|
2n

n−2 dx
) n−2

2n
( ∫

Bc
R

1

|x|
3n
2

dx
) 2

n

(4.1.96) ≤ C(R0, n)
1

R
n
2

∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx,

where in the last two inequalities we have used Hölder inequality and inequality (4.1.85) respectively. Also since

η∆η + 1
4
η2

d2 ∈ L∞(Ω), we have

(4.1.97) |I2| ≤ C(δ)(R(1 + R)2+σ)
∫

BR\Ωδ

η2v2

(1 + d2+σ)
dx.

Finally,

|I3| ≤ C
δ

X1(δ)

∫
Ωδ

X1(δ)
δ

v2dx ≤ C
∫

Ωε0

X1(d)
d
|φε0 (d)v|2dx,

where X1(d) = (1 − ln d)−1 and φε0 (d) is the function as in Theorem 4.1.11.

But by [FMoT1]-Proposition 5.1 we have∫
Ωε0

X1(d)
d
|φε0 v|2dx ≤ C

∫
Ωε0

d(|∇(φε0 u)|2 + |φε0 u|2)dx,

which implies

(4.1.98) |I3| ≤ C
δ

X1(δ)

( ∫
Ω

η2(|∇v|2 +
v2

1 + d2+σ
)dx

)
.

Finally for combine the estimates (4.1.96), (4.1.97) and (4.1.98) to deduce that for any ε > 0 there exist Mε such that

(4.1.99)
∣∣∣∣∣ ∫

Ω

(η∆η +
1
4
η2

d2 )v2dx
∣∣∣∣∣ ≤ ε∫

Ω

η2|∇v|2dx + Mε

∫
Ω

v2

1 + d2+σ
dx.

In the sequel we will establish the existence of a function ψ1 ∈ W1
0 (Ω; |x|, d) which realizes the infimum in (4.1.86). To

this end let wk be a minimizing sequence normalized by
∫

Ω

v2

1+d2+σ dx = 1. Then using (4.1.99) we can easily obtain (by
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(4.1.95)) that the sequence wk is bounded i.e. supk ||wk || < N. Therefore there exist a subsequence still denoted by wk

such that it converges to W1
0 (Ω; |x|, d)−weakly to ψ1. Clearly by embedding theorems for R > 0 and δ > 0 large and

small enough respectively we have

(4.1.100)
∫

BR\Ωδ

(η∆η +
1
4
η2

d2 )w2
kdx→

∫
BR\Ωδ

(η∆η +
1
4
η2

d2 )ψ2
1dx.

Also, we have by (4.1.87)

(4.1.101)
∣∣∣∣∣ ∫

Bc
R

(η∆η +
1
4
η2

d2 )w2
kdx

∣∣∣∣∣ ≤ CN
1

R
n
2
.

By (4.1.89) we have

(4.1.102)
∣∣∣∣∣ ∫

Ωδ

(η∆η +
1
4
η2

d2 )w2
kdx

∣∣∣∣∣ ≤ ∫
Ωδ

η2w2
k

(1 + d2+σ)
dx ≤ CN

δ

X1(δ)
,

where X1(δ) = (1 − ln δ)−1. Using now (4.1.100), (4.1.101) and (4.1.102) we have∫
Ω

(η∆η +
1
4
η2

d2 )w2
kdx→

∫
Ω

(η∆η +
1
4
η2

d2 )ψ2
1dx

and the result follows by lower semicontinuity of the gradient term of numerator in (4.1.95). �

Theorem 4.1.15. The asymptotic behavior of φ in Theorems 4.1.13 and 4.1.14 is like d
1
2 near to the boundary and like

|x|−an away from the boundary, where an = n−2
2 +

√
(n−2)2

4 − 1
4 .

proof: Assume first n ≥ 4. It is well known that the eigenfunction φ ∼ d
1
2 (see [DD] for a lower bound and see in

[FMoT1] for a upper bound). Thus we will focus away from the boundary such that ψ1 is the minimizer of 4.1.95. For

|x| > R where R is large enough, ψ1 solves the problem

(4.1.103) Lψ1 = −div(
1
|x|2an

∇ψ1) +
1
4

(
1

|x|2+2an
−

1
d2|x|2an

)ψ1 = λ
ψ

|x|2an (1 + d2+σ)
.

First we show the lower bound. Let M ≥ λ1. Consider the function 1 + C1|x|−σ, then

(L +
M

|x|2an(1+d2+σ)
)(1 + C1|x|−σ)

≤ σ(−

√
(n − 2)2

4
−

1
4
− σ)C1

1
|x|2an+σ+2 +

MC1

(1 + d2+σ)|x|2an+σ
+

M
(1 + d2+σ)|x|2an

≤ 0

for C1 > 0 and |x| large enough. On the other hand the first eigenfunction ψ1 of L satisfies(
L +

M
|x|2an (1 + d2+σ)

)
ψ1 =

(
λ

|x|2an (1 + d2+σ)

)
ψ1 +

( M
|x|2an (1 + d2+σ)

)
ψ1 ≥ 0.

Now since both function ψ1 and 1 + C1|x|−σ are smooth away from the boundary, we can select constant ε such that

ε(1 + C1|x|−σ) − ψ1 ≤ 0 on ∂Bc
R. Let g(x) = ε(1 + C1|x|−σ) − ψ1 ≤ 0 and g+ = max{g, 0}. Thus we can take g+ as test
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function to obtain (see remark below)∫
Bc

R

1
|x|2an

∇g∇g+dx +
1
4

(
1

|x|2an+2 −
1

d2|x|2an
)gg+dx + M

gg+

|x|2an(1+d2+σ)
≤ 0⇒

∫
Bc

R

1
|x|2an

|∇g+|2dx +
1
4

(
1

|x|2an+2 −
1

d2|x|2an
)|g+|2dx + M

|g+|2

|x|2an(1+d2+σ)
≤ 0,

which imply by (4.1.86) that g+ = 0 and the lower bound follows.

For the upper bound we first note by (4.1.75) that

∫
Bc

R

1
|x|2an |∇u|2 + ( 1

4
1

|x|2an+2 −
1

d2 |x|2an )u2dx∫
Bc

R

u2

|x|2an (1+d2+σ) dx
≥ C

( ∫
Ω

|u|
2n

n−2

|x|
2nan
n−2

dx
) n−2

n

−
∫

Bc
R

u2

|x|2an (1+d2+σ) dx∫
Bc

R

u2

|x|2an (1+d2+σ) dx

(4.1.104) ≥ C

( ∫
Ω

|u|
2n

n−2

|x|
2nan
n−2

dx
) n−2

n

( ∫
Bc

R

1
(1+d2+σ)

n
2

dx
) n

2
( ∫

Ω

|u|
2n

n−2

|x|
2nan
n−2

dx
) n−2

n

− 1→ ∞, as R→ ∞ ∀u ∈ C∞0 (Bc
R)

Since 1
4 ( 1

d2 |x| −
1
|x|3 ) ≤ 2R0

4|x|2d2 , for |x| > R0 = supx∈∂Ω |x| we have two cases:

Case 1:

If 0 < σ < 1 then as before we see that (L − λ
|x|2an (1+d2+σ) )(1 − C1|x|−σ) ≥ 0 for C1 > 0 big enough and (L −

λ1
|x|2an (1+d(2+σ)) )ψ1 = 0. We next choose ε > 0 big enough so that g(x) = εψ1 − (1 − C1|x|−σ) ≤ 0 on ∂Bc

R. Case

2:

If σ ≥ 1 we note that (L − λ
|x|2an (1+d2+σ) )(1 − C1|x|−1) ≥ 0 for C1 > 0 big enough and (L − λ

|x|2an (1+d2+σ) )ψ1 = 0. We next

choose ε > 0 big enough so that g(x) = εψ1 − (1 −C1|x|−1) ≤ 0 on ∂Bc
R.

Thus in both cases, since g+ is a test function we have∫
Bc

R

1
|x|2an

∇g∇g+dx + (
1
4

1
|x|2an+2

1
d2|x|2an

)gg+dx −
∫

Bc
R

λ

|x|2an (1 + d2+σ)
gg+dx ≤ 0,

from which it follows ∫
Bc

R

1
|x|2an |∇g+|2 + ( 1

4
1

|x|2an+2
1

d2|x|2an )g+2dx∫
Bc

R

g+2

|x|2an (1+d2+σ)

≤ λ.

This contradicts with (4.1.104) unless g+ = 0 from which follows the upper bound for φ.

For n = 3 the only difference is that in (4.1.104) we use (4.1.85) instead of (4.1.94). �

Remark: Let us now prove that the functions g+ of the above theorem are tests functions.

First we consider the function a(t) = 1 if t ≤ 1 and a(t) = 0 if t ≥ 2. Then the function ζr(x) = a( |x|r ), for r > R, it is a

H1
0(B2r \ BR) function. Then we set gm = min{g+,m} and φr,ε,m = ζr |x|−εgm. Note now that φr,ε,m ∈ H1

0(B2r \ BR). First

we claim that φr,ε,m → |x|−εgm, as r → ∞ with respect the norm (4.1.86). To this end, it is enough to show that∫
Bc

R

|∇((1 − ζr)(|x|−εgm))|2

|x|2an
dx→ 0, as r → ∞.
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Indeed ∫
Bc

R

|∇((1 − ζr)(|x|−εgm))|2

|x|2an
dx

≤ C
( ∫

Bc
R

|∇(1 − ζr)|2|(|x|−εgm)2

|x|2an
dx + ε2

∫
Bc

R

|(1 − ζr)gm|
2

|x|2an+2+ε
dx +

∫
Bc

R

|∇gm|
2(1 − ζr)2|x|−2ε

|x|2an
dx

)
(4.1.105)

It is not difficult to show that the second and third integral in the above inequality go to zero as r goes to infinity.

Finally for the first integral in (4.1.105), we have∫
Bc

R

|∇((1 − ζr)(|x|−εgm))|2

|x|2an
dx ≤

mC(n)
r2

∫ 2r

r
r1−ε−2

√
(n−2)2

4 − 1
4 dr

= mC(n)
r2−1−ε−2

√
(n−2)2

4 − 1
4

r2 → 0, as r → ∞(4.1.106)

and the claim follows. By the same way we can prove that |x|−εgm → gm as ε → 0 and gm → g+ as m → ∞. Thus we

reach to conclusion that g+ ∈ D
1,2
0 (Ω; |x|, d) and g+ = 0 in BR. In particular, we show that (by definition of W1

0 (Ω; |x|, d))

there exist a sequence um ∈ C∞0 (Bc
R) such that um → u with respect the norm (4.1.86), that is g+ is a test function.

4.2 Hardy Sobolev Inequalities In Domains Above the Graphs of C1,1 Func-
tions

In this section we will prove Hardy-Sobolev type inequalities in domains above the graphs of C1,1 functions. More

precisely, let Γ : Rn−1 → R satisfying the conditions |∇Γ| < λ and Γ ∈ C1,1(Rn−1). We then call the set

Ω = {(x′, xn) ∈ Rn : xn > Γ(x′)},

a domain above the graph of a C1,1 function.

The half space Rn
+ = {(x′, xn) ∈ Rn : xn > 0} is an example of a domain above the graph of C1,1 function. Especially,

we have the Hardy-Maz’ya-Sobolev inequality in half space (for n ≥ 3)

(4.2.107)
∫
Rn

+

|∇u|2dx −
1
4

∫
Rn

+

u2

x2
n

dx ≥ C(n)
( ∫

Rn
+

|u|
2n

n−2 dx
) n−2

n

, ∀u ∈ C∞0 (Rn
+).

We note here that the inequality (4.2.107) is valid for n = 3 without using some logarithmic function as in exterior

domains. Thus, the proof of Hardy-Maz’ya-Sobolev inequality in domain above above the graphs of C1,1 functions is

different from the proof in exterior domains.

Set d(x) = infy∈∂Ω |x− y| and δ(x) = xn −Γ(x′). Then we can easily prove that kδ(x) ≤ d(x) ≤ δ(x), where k = 1
1+µ

. Then

we have the following Theorem

Theorem 4.2.1. Let n ≥ 3 and Ω be the domain above the graph of C1,1 function which satisfies −∆d ≥ 0. Then there

exists a positive constant C which depends only on n and µ, such that

(4.2.108)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C(n, µ)
( ∫

Ω

|u|
2n

n−2 dx
) n−2

n

. ∀u ∈ C∞0 (Ω).
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proof: Set u = d
1
2 v then (4.2.108) becomes equivalent to

∫
Ω

d|∇v|2dx −
1
2

∫
Ω

−∆du2dx ≥ C
( ∫

Ω

d
n

n−2 |u|
2n

n−2 dx
) n−2

n

.

Since −∆d ≥ 0 and kδ(x) ≤ d(x) ≤ δ(x), it is enough to prove

∫
Ω

δ|∇v|2dx ≥ C(k)
( ∫

Ω

δ
n

n−2 |v|
2n

n−2 dx
) n−2

n

.

But by inequality (4.2.107) if we set u = x
1
2
n v we have that

(4.2.109)
∫
Rn

+

yn|∇yv|2dy ≥ C(n)
( ∫

Rn
+

y
n

n−2
n |v|

2n
n−2 dy

) n−2
n

∀v ∈ C∞0 (Rn
+).

Now set in (4.2.109) xi = yi for i = 1, ..., n − 1 and xn = yn + Γ(y′) then ∇y′v = ∇x′v + vxn∇x′Γ and vyn = vxn , thus,

C(µ)|∇xv| ≤ |∇yv| ≤ c(µ)|∇xv|

and by (4.2.109) we have ∫
Ω

δ|∇v|2dx ≥ C(µ)
( ∫

Ω

δ
n

n−2 |v|
2n

n−2 dx
) n−2

n

,

which is the desired result. �

Lemma 4.2.2. Let a, b, p and q be such that 1 ≤ p < n, p < q ≤ pn
n−p and b = a − 1 +

q−p
qp n.

Then for any η > 0, there holds:

λη−
1−λ
λ ||xa

nv||
L

np
n−p

(Rn
+) + (1 − λ)η||xa−1

n v||Lp(Rn
+) ≥ ||xb

nv||Lq(Rn
+), ∀u ∈ C∞0 (Rn

+)

where

(4.2.110) 0 < λ =
n(q − p)

qp
≤ 1.

proof: For p∗ =
np

n−p and λ as (4.2.2) we use Hölder inequality to obtain:

∫
Rn

+

xqb
n vqdx =

∫
Rn

+

xaλq
n vλqdqb−aλ|v|q(1−λ)dx

≤

(
xap∗

n |v|p
∗
) λq

p∗
( ∫

Rn
+

xp(a−1)
n |v|pdx

) (1−λ)q
p

⇔

||xb
nv||Lq(Rn

+) ≤ ||xa
nv||λ

L
np

n−p (Rn
+)
||xa−1

n v||1−λLp(Rn
+).

Now use the fact that xλy1−λ ≤ λη−
1−λ
λ x + (1 − λ)ηy, for any η > 0, to reach to the desired result.

hfill�

Theorem 4.2.3. Let n ≥ 3. Then the following inequality is valid
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∫
Rn

+

xn|∇u|2dx ≥
( ∫

Rn
+

xnu
2(n+1)

n−1 dx
) n−1

n+1

, ∀u ∈ C∞0 (Rn
+)

where C is a positive constant which depends only on dimension n.

proof: By Lemma 4.2.2, if we choose p = 1 and η = 1 we have the following inequality

(4.2.111) ||xb
nv||Lq(Rn

+) ≤ λ||xa
nv||L n

n−1 (Rn
+) + (1 − λ)||xa−1

n v||L1(Rn
+).

Now, for any a , 0 we have

(4.2.112)
∫
Rn

+

xa−1
n |v|dx =

1
a

∫
Rn

+

∇xa
n∇xn|v|dx = −

1
a

∫
Rn

+

xa
n∇d∇|v|dx ≤

1
|a|

∫
Rn

+

xa
n|∇v|dx.

By Sobolev inequality and (4.2.112) we have

(4.2.113) S n||dxa
nv||L n

n−1 (Rn
+) ≤

∫
Rn

+

|∇xa
nv|dx ≤ a

∫
Rn

+

xa−1
n |v|dx +

∫
Rn

+

xa
n|∇v|dx ≤ 2

∫
Rn

+

xa
n|∇v|dx,

where S n = nπ
1
2 (Γ(1 + n

2 ))−
1
n see [Ma] p189. Thus by (4.2.111), (4.2.112) and (4.2.113) we have

(4.2.114)
( ∫

Rn
+

xbq
n |v|q

) 1
q

≤ (
2λ
S n

+
1 − λ
|a|

)
∫
Rn

+

xa
n|∇v|dx.

Now, replace v by us in the above inequality to obtain

(4.2.115)
( ∫

Rn
+

xbq
n |u|sq

) 1
q

≤ (
2

S n
+

1
a

)s
∫
Rn

+

xa
n|u|

s−1|∇u|dx ≤ (
2

S n
+

1
a

)s
( ∫

Rn
+

xa
n|∇u|2dx

) 1
2
( ∫

Rn
+

xa
n|u|

2s−2dx
) 1

2

and the result follows, if we choose a = 1, q = n+1
n λ = n

n+1 and s = 2n
n−1 . �

Finally, we prove a Hardy-Sobolev type inequality which is of independent interest.

Theorem 4.2.4. Let n ≥ 3 and Ω be the domain above the graph of C1,1 function which satisfies −∆d ≥ 0. Then there

exists a positive constant C which depends only on n and µ, such that

(4.2.116)
∫

Ω

|∇u|2dx −
1
4

∫
Ω

u2

d2 dx ≥ C(µ, n)
( ∫

Ω

du
2(n+1)

n−1 dx
) n−1

n+1

, ∀u ∈ C∞0 (Ω).

proof: The proof is same as Theorem 4.2.1. The only difference is that we use Theorem 4.2.3. �



Chapter 5

Harnack Inequality and Heat Kernel
Estimates

Throughout this chapter we assume that n ≥ 3 and Ω is an exterior domain i.e complement of a smooth compact

domain. For our purposes here, smooth means C2 and we consider exterior domains not containing the origin.

The main goal of this chapter is to prove a parabolic Harnack type inequality for the positive solutions of the problem

(5.0.1) ut = ∆u +
u

4d2 in Ω × (0,T ].

Also we prove sharp two side estimates for the heat kernel corresponding to problem (5.0.1).

The strategy which we follow is:

First, we consider the minimizing problem in section 4.1.4.

λ1 = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2∫
Ω

u2

1+d2+σ

,

where σ > 0. We have proven in that λ1 ∈ R. Also, in section 4.1.4 we have proven the existence of a ground state

function φ ∈ H1
loc(Ω) which solves

(5.0.2) − ∆u −
u

4d2 = λ1
u

d2+σ
in Ω,

in the weak sense. In addition, we have shown that the function φ has the following properties

1. if d(x) ≤ C0 then there exist C1, C2 such that C1d1/2(x) ≤ φ(x) ≤ C2d1/2(x), where C0 is small enough.

2. if C0 ≤ d(x) ≤ R0 then there exist C3, C4 such that C3 ≤ φ(x) ≤ C4 where R0 is big enough.

3. if d(x) ≥ R0 then there exist C5, C6 such that C5|x|−an ≤ φ(x) ≤ C6|x|−an , where an = n−2
2 +

√
(n−2)2

4 − 1
4 .

Now if we set u = vφ in problem (5.0.1) we have

(5.0.3) vt = Lφv =
div(φ2∇v)

φ2 − λ1
v

1 + d2+σ
, in Ω × (0,T ].

69
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Thus it is enough to prove a boundary parabolic Harnack inequality for the positive solutions of the problem (5.0.3).

We will prove it by Moser’s iteration technique (see [SC2] for a simple case.)

Especially we prove

Theorem 5.0.5. Let v be a non-negative solution of (5.0.3). Then there exist constant A such that the following estimate

is valid for all x, y ∈ Ω and all 0 < s < t < T.

v(s, y) ≤ v(t, x) exp
(
A

(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

))
,

where the constant R > 0 is small enough and depends only on ∂Ω and the constant C0.

By the above theorem we have the following corollary

Corollary 5.0.6. Let u be a non-negative solution of (5.0.1). Then there exist constant A such that the following

estimate is valid for all x, y ∈ Ω and all 0 < s < t < T.

u(s, y)
φ(y)

≤
u(t, x)
φ(x)

exp
(
A

(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

))
,

where the constant R > 0 is small enough and depends only on ∂Ω and the constant C0.

Finally we prove the sharp two side estimates for the heat kernel hφ(t, x, y) corresponding to problem (5.0.3).

Theorem 5.0.7. Let an = n−2
2 +

√
(n−2)2

4 − 1
4 . Then, there exist positive constants A1, A2, C1, C2 and t0 such that for

all x, y ∈ Ω and all 0 < t < t0 the heat kernel hφ(x, t, y) satisfies

C1

[
|x|2an+1|y|2an+1

max{d(x), r}max{d(y), r}

] 1
2

t−
n
2 exp

(
− A1

|x − y|2

t

)

≤ hφ(t, x, y) ≤ C2

[
|x|2an+1|y|2an+1

max{d(x), r}max{d(y), r}

] 1
2

t−
n
2 exp

(
− A2

|x − y|2

t

)
.

Now we note that the heat kernel h(t, x, y) corresponding to the problem (5.0.1) satisfies

(5.0.4) h(t, x, y) = φ(x)φ(y)hφ(t, x, y).

Also by properties (1-4) of φ, we have that there exist c1 and c2 such that

(5.0.5) c1
d(x)
|x|an+1 ≤ φ(x) ≤ c2

d(x)
|x|an+1 .

Thus by (5.0.4), (5.0.5) and the previous theorem we have

Corollary 5.0.8. Let n ≥ 3, then there exist positive constants C1, C2, A1, A2 and t0 > 0 such that for all x, y ∈ Ω

and all 0 < t < t0 the heat kernel h(x, t, y) satisfies

C1

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A1

|x − y|2

t

)

≤ h(t, x, y) ≤ C2

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A2

|x − y|2

t

)
.

In the rest of this chapter when we meet the function φ, we always mean the function φ which we refer above.
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5.1 Doubling Property, Poincare and Moser inequality

5.1.1 Doubling Property

Consider now the space D1,2
0 (Ω; φ) which is the completion of C∞0 (Ω) function under the norm,

||u||
D

1,2
0 (Ω;φ) =

∫
Ω

φ(|∇u|2 +
u2

1 + d2+σ
)dx.

In the sequel we will use the following local representation of the boundary of Ω. There exist a finite number m of

coordinate systems (y′i , yn), y′i = (yi1, ..., yin−1) and the same number m of functions ai(y′i) defined on the closure cubs,

∆i := {y′i : |yi j| ≤ β} f or j = 1, ..., n − 1, i ∈ {1, ..,m} so that for each point x ∈ ∂Ω there is at least i such that

x = (x′i , ai(x′i )). The function ai satisfies the Lipschitz condition on ∆i with constant A > 0, that is

|ai(y′i) − ai(z′i) ≤ A|y′i − z′i |,

for y′i , z
′
i ∈ ∆i. Moreover there exists a positive constant b < 1 such that the set Bi is defined for any i ∈ {1, ..,m} by the

relation Bi = {(y′i , yin) : ai(y′i) ≤ yin ≤ ai(y′i) + b} and Γi = Bi ∩ ∂Ω = {(y′i , yin) : y′i ∈ ∆i, yin = ai(y′i)}. Finally let us

observe for any y ∈ ∆i where someone can make the following inequality on the distance function

(1 + A)−1(yin − ai(y′i)) ≤ d(y) ≤ yin − ai(y′i).

Let us now define the balls which we will use to prove some Poincare, weighted Poincare and Nash inequalities. More

precisely we have the following definition

Definition 5.1.1. Let γ ∈ (1, 2)

For any x ∈ Ω and for any 0 < r < C0
2γ < b, we define the ball centered at x and having radius r as follows.

(i) If d(x) ≤ γr then

B(x, r) = {(y′i , yin) : |y′i − x′i | ≤ r, d(x) − r ≤ yin − ai(y′i) ≤ r + d(x)},

where i ∈ {1, ...,m} is uniquely defined by the point x ∈ ∂Ω such that |x− x| = d(x), that is by the projection of the center

x onto ∂Ω.

(ii) If d(x) ≥ γr then B(x, r) = B(x, r) the Euclidean ball centered at x.

We also define by

V(x, r) =

∫
B(x,r)∩Ω

φ2(y)dy,

the volume of the ”ball” centered at x and having radius r.

We first derive a sharp volume estimate.

Lemma 5.1.2. Let n ≥ 3 and Ω be an exterior domain not containing the origin. Then there exist positive constants d1

and d2 such that for any x ∈ Ω and 0 < r < C0
2γ < b, we have

d1
max{d(x), r}
|x|2an+1 rn ≤ V(x, r) ≤

max{d(x), r}
|x|2an+1 rn,

where an = n−2
2 +

√
(n−2)2

4 − 1
4 .

proof: To prove the Lemma we consider four cases.

Case 1. d(x) ≤ C0
2γ and d(x) ≥ γr. In this case we have B(x, r) = B(x, r) ⊂ Ω. Due to the fact that for any y ∈ B(x, r), we



72 5. Harnack Inequality and Heat Kernel Estimates

have
γ − 1
γ

d(x) ≤ d(x) − r ≤ d(y) ≤ d(x) + r ≤
γ + 1
γ

d(x),

we obtain ∫
B(x,r)

φ2(y)dy ≤ C2

∫
B(x,r)

d(y)dy ≤ C2wn
γ + 1
γ

d(x)rn = C2wn
γ + 1
γ

max{d(x), r}rn

≤ C2wn
γ + 1
γ

(P +
C0

2γ
)an+1 max{d(x), r}

|x|2an+1 rn,

where P = sup{|x| : x ∈ ∂Ω}. On the other hand we also have

C1wn
γ − 1
γ

max{d(x), r}rn ≤

∫
B(x,r)

φ2(y)dy⇒

C1wn
γ − 1
γ

p2an+1 max{d(x), r}
|x|2an+1 rn ≤ V(x, r),

where p = inf{|x| : x ∈ ∂Ω}.

Case 2.

Considering now d(x) ≤ C0
2γ and d(x) ≤ γr. Then we have (for some i ∈ {1, ...,m} where we omit the subscript i for

convenience)

V(x, r) =

∫
B(x,r)∩Ω

φ2(y)dy ≤ C2

∫ d(x)+a(y′)+r

max{d(x)+a(y′)−r,a(y′)}
(yn − a(y′))dyndy′

≤ C2(d(x) + r)
∫ d(x)+a(y′)+r

max{d(x)+a(y′)−r,a(y′)}
dyndy′ ≤ C2(d(x) + r)wn−1rn

≤ 2C2wn−1 max{d(x), r}rn ≤ 2C2wn−1(P +
C0

2γ
)2an+1 max{d(x), r}

|x|2an+1 rn.

On the other hand we have

V(x, r) ≥ C1(1 + A)−1
∫ d(x)+a(y′)+r

max{d(x)+a(y′)−r,a(y′)}
(yn − a(y′))dyndy′

≥ C1(1 + A)−1
∫ d(x)+a(y′)+r

max{γr+a(y′)−r,a(y′)}
(yn − a(y′))dyndy′

≥ C1(1 + A)−1wn−1(γ − 1)rn(d(x) + (2 − γ)r)

≥ C1(1 + A)−1wn−1(γ − 1)(2 − γ)rn max{d(x), r}

≥ C1(1 + A)−1wn−1(γ − 1)(2 − γ)p2an+1 max{d(x), r}
|x|2an+1 rn

Case 3.
C0
2γ ≤ d(x) ≤ 4R,

V(x, r) =

∫
B(x,r)

φ2(y)dy ≤
∫

B(x,r)
C4dy ≤ C4wnrn ≤

2γ(4R)2an+1

C0
C4wn

max{d(x), r}
|x|2an+1 rn.

Also, we have

V(x, r) ≥ C3wnrn ≥
1

γ(4R)2an+1 C3wn
max{d(x), r}
|x|2an+1 rn.

Case 4.
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d(x) ≥ 4R

V(x, r) =

∫
B(x,r)

φ2(y)dy ≤ C6

∫
B(x,r)
|y|−2an dy ≤ C6

1
(|x| − r)2an

∫
B(x,r)

dy

≤ C6wn22an
1
|x|2an

rn ≤ C6wn22an
4R

4R − P
max{d(x), r}
|x|2an+1 rn,

where P = sup{|x| : x ∈ ∂Ω}. Also, on the other hand we have

V(x, r) ≥ C5
1

(|x| + r)2an

∫
B(x,r)

dy ≥ C5wn2−2an
max{d(x), r}
|x|2an+1 rn.

�

From the previous Lemma someone can easily deduce the doubling property which reads as follows:

Corollary 5.1.3. Doubling property. Ω be an exterior domain not containing the origin. Then there exist positive

constants C and β such that for any x ∈ Rn \Ω and 0 < r < β we have

V(x, 2r) ≤ CV(x, r).

5.1.2 Poincare Types Inequalities

We begin this section with the proof some Poincaré type inequalities. We begin with the following weighted Poincare

inequality, the proof of which is [Mo]. We give it for convenience to the reader.

Lemma 5.1.4. Let n ≥ 2,U ⊂ Rn be a smooth bounded convex domain. Also let Φ be non-negative continuous function

with support in U with the following property.

If for any x, y ∈ U we have

Φ(x) ≤ Φ(y)

then

(5.1.6) Φ(x) ≤ Φ(tx + (1 − t)y) ∀ t ∈ [0, 1].

Then ∀ f ∈ C∞(U) we have

min
ξ∈R

∫
U
| f (y) − ξ|2Φ2(y)dy ≤ cB

∫
U
|∇ f (y)|2Φ2(y)dy,

where B = supx,y∈supp(Φ) |x − y| and

c =
maxx∈U φ(x)
2
∫

U Φ(x)dx

∫
Φ>0

dx.

Where the minimum above is assumed for

k =

∫
U f Φ(x)dx∫
U Φ(x)dx

proof: We note that

(5.1.7)
∫

U

∫
U
| f (x) − f (y)|2Φ(x)Φ(y)dxdy = 2

∫
U

Φ(x)dx
∫

U
| f (y) − k|2Φ(y)dy,
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where

k =

∫
U f (x)Φ(x)dx∫

U Φdx
.

Let x, y ∈ U such that 0 < Φ(x) ≤ Φ(y). Then we have

| f (x) − f (y)|2Φ(x)Φ(y) =

( ∫ |x−y|

0
∇ f (x + rw) · wdr

)2
Φ(x)Φ(y),

where w =
y−x
|x−y| .

| f (x) − f (y)|2Φ(x)Φ(y) ≤

∫ |x−y|

0

√
Φ(x + rw)

∇ f (x + rw) · w
√

Φ(x + rw)
drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr

∫ |x−y|

0

1
Φ(x + rw)

drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr|x − y|max Φ

≤ B max Φ

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr,

where in the above inequalities we have used the Hölder inequality and (5.1.6).

Now letting z = y − x and integrating with respect x we have

∫
U
| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ B max Φ

∫
U

∫ |z|

0
Φ(x + r

z
|z|

)|∇ f (x + r
z
|z|

)|2drdx.

Now set V(y) = Φ(y)|∇ f (y)|2 if y ∈ U, V(y) = 0 otherwise. Then we have∫
U
| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ B max Φ

∫
U

∫ |z|

0
V(x + r

z
|z|

)drdx

= B max Φ

∫
Rn

∫ |z|

0
V(x + r

z
|z|

)drdx

= B max Φ

∫
Rn

∫ |z|

0
V(y)drdy

= |z|B max Φ

∫
Rn

V(y)dy ≤ B2 max Φ

∫
Rn

V(y)dy

Integrating now over z we have∫
U

∫
U
| f (x) − f (y)|2Φ(x)Φ(y)dxdy ≤ B2 max Φ

∫
Φ>0

dx
∫

U
|∇ f (y)|2Φ(y)dy.

Finally, combining the above inequality and (5.1.7) we have the desired result. �

Also we have,

Theorem 5.1.5. Local Poincaré inequality. Let n ≥ 2 and Ω be an exterior domain not containing the origin. Then

there exist positive constants C = C(n, γ,Ω) and β such that for any x0 ∈ Ω, we have

inf
ξ∈R

∫
B(x0,r)∩Ω

| f (y) − ξ|2φ2(y)dy ≤ C
∫
B(x0,r)∩Ω

|∇ f (y)|2φ2(y)dy, ∀ f ∈ C∞(B(x0, r) ∩Ω)

proof: We consider only the case d(x) ≤ γr for some γ ∈ (1, 2). Since in other cases we have cφ(x) ≤ φ(y) ≤ Cφ(x) for

any x ∈ B(x0, r) ∩Ω and we can reach easily to the desired result.
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In our case we have that φ2(x) ≤ C2(xn − a(x′)) = C2Φ(x), thus it is enough to prove that

inf
ξ∈R

∫
B(x0,r)∩Ω

| f (y) − ξ|2φ(y)dy ≤ Cn

∫
B(x0,r)∩Ω

|∇ f (y)|2φ(y)dy.

We note that ∫
B(x0,r)∩Ω

∫
B(x0,r)∩Ω

| f (x) − f (y)|2Φ(x)Φ(y)dxdy

= 2
∫
B(x0,r)∩Ω

Φ(x)dx
∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy,

where

k =

∫
B(x0,r)∩Ω

f (x)Φ(x)dx∫
B(x0,r)∩Ω

Φ(x)dx
.

First we assume xn ≤ yn then we have for any t ∈ [0, 1]

(5.1.8) xn ≤ txn + (1 − t)yn.

Then we have

| f (x) − f (y)|2Φ(x)Φ(y) =

( ∫ |x−y|

0
∇ f (x + rw) · wdr

)2
Φ(x)Φ(y),

where w =
y−x
|x−y| .

| f (x) − f (y)|2Φ(x)Φ(y) ≤

∫ |x−y|

0

√
Φ(x + rw)

∇ f (x + rw) · w
√

Φ(x + rw)
drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr

∫ |x−y|

0

1
Φ(x + rw)

drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2drxn|x − y|

≤ (γ + 1)r2
∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr,

where in the above inequalities we have used the Hölder inequality and the notations (5.1.8).

Now letting z = y − x and integrating with respect x we have∫
B(x0,r)∩Ω

| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ (γ + 1)r2
∫
B(x0,r)∩Ω

∫ |z|

0
Φ(x + r

z
|z|

)|∇ f (x + r
z
|z|

)|2drdx.

Now set V(y) = Φ(y)|∇ f (y)|2 if y ∈ B(x0, r) ∩Ω, V(y) = 0 otherwise. Then we have∫
B(x0,r)∩Ω

| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ (γ + 1)r2
∫
B(x0,r)∩Ω

∫ |z|

0
V(x + r

z
|z|

)drdx

= (γ + 1)r2
∫
Rn

∫ |z|

0
V(x + r

z
|z|

)drdx = (γ + 1)r2
∫
Rn

∫ |z|

0
V(y)drdy = |z|(γ + 1)r2

∫
Rn

V(y)dy.

Integrating now over z we get∫
B(x0,r)∩Ω

∫
B(x0,r)∩Ω

| f (x) − f (y)|2Φ(x)Φ(y)dxdy ≤ (γ + 1)rn+3wn

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.
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Thus, ∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy ≤
wn(γ + 1)rn+1∫
B(x0,r)∩Ω

Φ(x)dx

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.

Now let us estimate the following integral∫
B(x0,r)∩Ω

Φ(x)dx =

∫
B(x′0,r)

∫ d(x)+r

max{d(x)−r,0}
xndxndx′

≥ wn−1

∫ d(x)+r

d(x)
xndxn ≥ wn−1

r2

2
.

We deduce the desired result.∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy ≤
wn(γ + 1)rn+3

wn−1
2 rn+1

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.

�

Finally we have

Theorem 5.1.6. Local weighted Poincare inequality. Let n ≥ 2 and Ω be an exterior domain not containing the

origin. Then there exist positive constants C = C(n, γ,Ω) and β such that for any x0 ∈ Ω with d(x0) < γr < β for some

γ ∈ (1, 2), we have for any f ∈ C∞0 (Ω)

inf
ξ∈R

∫
B(x0,r)∩Ω

| f (y) − ξ|2Φ(y)dy ≤ C
∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy,

where

Φ(x) =

(
1 −
|x′ − x′0|

r

)+2

(xn − a(x′))
(
1 −
|xn − a(x′) − d(x0)|

r

)+2

.

proof: We note that ∫
B(x0,r)∩Ω

∫
B(x0,r)∩Ω

| f (x) − f (y)|2Φ(x)Φ(y)dxdy

= 2
∫
B(x0,r)∩Ω

Φ(x)dx
∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy,

where

k =

∫
B(x0,r)∩Ω

f (x)Φ(x)dx∫
B(x0,r)∩Ω

Φ(x)dx
.

First we assume xn ≤ yn then we have for any t ∈ [0, 1]

xn ≤ txn + (1 − t)yn

and (
1 −
|tx′(1 − t)y′ − x′0|

r

)+

≥

(
1 −
|x′ − x′0|

r

)+

or (
1 −
|tx′(1 − t)y′ − x′0|

r

)+

≥

(
1 −
|y′ − x′0|

r

)+

and (
1 −
|txn + (1 − t)yn − d(x0)|

r

)+

≥

(
1 −
|xn − d(x0)|

r

)+
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or

(5.1.9)
(
1 −
|txn + (1 − t)yn − d(x0)|

r

)+

≥

(
1 −
|yn − d(x0)|

r

)+

.

Then we get

| f (x) − f (y)|2Φ(x)Φ(y) =

( ∫ |x−y|

0
∇ f (x + rw) · wdr

)2
Φ(x)Φ(y),

where w =
y−x
|x−y| .

| f (x) − f (y)|2Φ(x)Φ(y) ≤
∫ |x−y|

0

√
Φ(x + rw)

∇ f (x + rw) · w
√

Φ(x + rw)
drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr

∫ |x−y|

0

1
Φ(x + rw)

drΦ(x)Φ(y)

≤

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2drxn|x − y| ≤ (γ + 1)r2

∫ |x−y|

0
Φ(x + rw)|∇ f (x + rw)|2dr,

where in the above inequalities we have used the Hölder inequality and the notations (5.1.9).

Now letting z = y − x and integrating with respect x we have∫
B(x0,r)∩Ω

| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ (γ + 1)r2
∫
B(x0,r)∩Ω

∫ |z|

0
Φ(x + r

z
|z|

)|∇ f (x + r
z
|z|

)|2drdx.

Now set V(y) = Φ(y)|∇ f (y)|2 if y ∈ B(x0, r) ∩Ω, V(y) = 0 otherwise. We then get∫
B(x0,r)∩Ω

| f (x) − f (x + z)|2Φ(x)Φ(x + z)dx ≤ (γ + 1)r2
∫
B(x0,r)∩Ω

∫ |z|

0
V(x + r

z
|z|

)drdx

= (γ + 1)r2
∫
Rn

∫ |z|

0
V(x + r

z
|z|

)drdx = (γ + 1)r2
∫
Rn

∫ |z|

0
V(y)drdy = |z|(γ + 1)r2

∫
Rn

V(y)dy.

Integrating now over z we have∫
B(x0,r)∩Ω

∫
B(x0,r)∩Ω

| f (x) − f (y)|2Φ(x)Φ(y)dxdy ≤ (γ + 1)rn+3wn

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.

Thus we have ∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy ≤
wn(γ + 1)rn+1∫
B(x0,r)∩Ω

Φ(x)dx

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.

Now let us estimate the following integral∫
B(x0,r)∩Ω

Φ(x)dx =

∫
B(x′0,r)

(
1 −
|x′ − x′0|

r

)+2 ∫ d(x)+r

max{d(x)−r,0}
yn

(
1 −
|xn − d(x0)|

r

)+2

dxndx′

First we estimate from below the following integral.∫
B(x′0,r)

(
1 −
|x′ − x′0|

r

)+2

dx′ =

∫ r

0

∫
∂B(x0,s)

sn−2(1 −
s
r

)2dS y′ds = wn−1C(n)rn−1.

Let us estimate from below the following integral∫ d(x)+r

max{d(x)−r,0}
xn

(
1 −
|xn − d(x0)|

r

)+2

dxn ≥

∫ d(x0)+ r
2

d(x0)
xn

(
1 −
|xn − d(x0)|

r

)+2

dxn ≥
1
32

r2.
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Thus we have the desired result.∫
B(x0,r)∩Ω

| f (y) − k|2Φ(y)dy ≤
wn(γ + 1)rn+3

c(n)rn+1

∫
B(x0,r)∩Ω

|∇ f (y)|2Φ(y)dy.

�

5.1.3 Moser Inequality

In this section we will give the Moser inequality, which proof is similar as in [FMoT3]. We will give it for convenience

to the reader.

Theorem 5.1.7. Let n ≥ 3 and Ω be an exterior domain not containing the origin. Then there exist positive constants

C and β such that for any ν ≥ n + 1, x0 ∈ Ω and f ∈ C∞0 (B(x0, r) ∩Ω) we have∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
ν )φ2(y)dy

≤ CMr2V(x, r)−
2
ν

∫
B(x0,r)∩Ω

|∇ f (y)|2φ2(y)dy
( ∫
B(x0,r)∩Ω

| f (y)|2φ2(y)dy
) 2
ν

.

proof: We consider only the case where d(x0) < γr, d(x0) < β and f ∈ C∞0 (B(x0, r)∩Ω), since C1φ(x) ≤ φ(y) ≤ C2φ(x)

otherwise. First we claim that it is enough to prove

(5.1.10)
( ∫
B(x0,r)∩Ω

| f (y)|
2(n+1)

n−1 d(y)dy
) n−1

n+1

≤ C
∫
B(x0,r)∩Ω

|∇ f (y)|2φ2(y)dy.

Indeed, if (5.1.10) is valid then∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
n+1 )φ2(y)dy ≤ C2

∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
ν )d(y)dy

=

∫
B(x0,r)∩Ω

| f (y)|2| f (y)|
4
ν d

2
n+1 (y)d

n−1
n+1 (y)dy

≤

( ∫
B(x0,r)∩Ω

| f (y)|
2(n+1)

n−1 d(y)dy
) n−1

n+1
( ∫
B(x0,r)∩Ω

| f (y)|2d(y)dy
) 2

n+1

,(5.1.11)

as well as for any ν > n + 1

∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
ν )d(y)dy

( ∫
B(x0,r)∩Ω

| f (y)|2d(y)dy
) 2(ν−n−1)

ν(n+1)

≤

( ∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
n+1 )d(y)dy

) 1+ 2
ν

1+ 2
n+1

( ∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
n+1 )d(y)dy

)( 2
n+1−

2
ν ) 1

1+ 2
n+1

×

( ∫
B(x0,r)∩Ω

d(y)dy
)( 2

n+1−
2
ν ) 1

1+ 2
n+1

( ∫
B(x0,r)∩Ω

d(y)dy
)( 2

n+1−
2
ν )

2
n+1

1+ 2
n+1

=

∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
n+1 )d(y)dy

( ∫
B(x0,r)∩Ω

d(y)dy
) 2(ν−n−1)

ν(n+1)

≤ C
−

2(ν−n−1)
ν(n+1)

1 V(x, r)2− 2
ν

∫
B(x0,r)∩Ω

| f (y)|2(1+ 2
n+1 )d(y)dy,
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thus by (5.1.11) and the above inequality we have∫
B(x0,r)∩Rn\Ω

| f (y)|2(1+ 2
ν )d(y)dy

≤ C(n, β)r2V(x, r)−
2
ν

( ∫
B(x0,r)∩Rn\Ω

| f (y)|
2(n+1)

n−1 d(y)dy
) n−1

n+1
( ∫
B(x0,r)∩Rn\Ω

| f (y)|2φ2(y)dy
) 2
ν

,

where by (5.1.10) we have the desired result.

In the sequel we will give the proof of (5.1.10). We will follow closely the argument of [FMaT1]. If V ⊂ Rn is any

bounded domain u ∈ C∞0 (V), then it is well known that

S n||u||L n
n−1 (V) ≤ ||∇u||L1(V),

where S n = nπ
1
2 [Γ(1 + n

2 )]−
1
2 (see p 189 in [Ma]). Let us fix from now on that V = B(x0, r) ∩ Ω and let us apply the

above inequality to u = da f for any f ∈ C∞0 (V) and any a > 0. Thus we get

S n||u||L n
n−1 (V) ≤

∫
V
|∇ f |da + ada−1|∇d|| f |dy.

Let us remark at this point that boundary terms on ∂Ω are zero due to the presence of the weight da, a > 0. To estimate

the last term of the right hand side we will make use of an integration by parts, noting that ∇d · ∇d = 1 a.e.. That is we

have ∫
V

ada−1| f |dy = a
∫

V
da−1∇d · ∇d| f |dy =

∫
V
∇da · ∇d| f |dy = −

∫
V

da · δd| f |dy +

∫
V

da∇d · ∇| f |dy.

Under our smoothness assumption on Ω we have that |d∆d| ≤ c0δ in Ωδ, for δ small, say 0 < δ < δ0, and for same

positive constant independent of δ (δ0, c0 depending only Ω). Now if d(x)+r < δ that is if r < δ
γ+1 , we have that V ⊂ Ωδ

and it follows that

a
∫

V
da−1| f |dy ≤ c0δ

∫
V

da−1| f |dy +

∫
V

da|∇ f |dy,

consequently for any r ∈ (0, β) with β = 1
γ+1 min{δ0,

a
c0
}

and any δ < a
c0

the following inequality is true

(5.1.12) S n||dau||L n
n−1 (V) ≤ (1 +

a
a − c0δ

)||da∇u||L1(V).

To proceed we will use the following interpolation inequality (cf. Lemma 4.1 in [FMaT1]):

||dbu||Lq(V) ≤
n(q − 1)

q
||dau||L n

n−1 (V) +
q − n(q − 1)

q
||da−1u||L1(V),

for each 1 < q ≤ n
n−1 and b = a − 1 +

q−1
q n, a > 0.

By (5.1.12) and the above inequality, we get for any a, b, q as above the following inequality

(5.1.13) ||dbu||Lq(V) ≤ C1||da∇u||L1(V),

where C1 =
n(q−1)

S nq ( a
a−c0δ

+ 1) +
q−n(q−1)

q
1

a−c0δ0
. Let us apply inequality (5.1.13) to |u|s instead of u then

( ∫
V

dbq|u|sqdx
) 1

q

≤ C1s
∫

V
da|u|s−1|∇u|dx
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≤ C1s
( ∫

V
d2a1 |u|2s−2dx

) 1
2
( ∫

V
d2a2 |∇u|2dx

) 1
2

,

where a1 + a + 2 = a. Now we choose a2 = 1
2 and 2a1 = bq ⇔ a1 =

bq
2 . Thus a =

bq
2 + 1

2 and b =
bq−1

2 +
q−1

q n ⇔ b =

− 1
2 +

q−1
q n

1− q
2

. Also we choose s = 2
2−q . Thus the last inequality becomes

( ∫
V

dbq|u|sqdx
) 1

q−
1
2

≤ C1
2 − q

2

( ∫
V

d|∇u|2dx
) 1

2

.

Now we choose q = n+1
n (then sq =

2(n+1)
n−1 and bq = 1) to give us the desired result. �

5.2 Moser’s Iteration
We keep the notation of the previous sections. Set

Q = (s − r2, s) ×B(x, r) ∩Ω

Qδ = (s − δr2, s) ×B(x, δr) ∩Ω.

Definition 5.2.1. We will say that v ∈ C1((s − r2, r) : H1
φ(B(x, r) ∩Ω)) is a weak solution of (5.0.3) if for each

Φ ∈ C1
0((s − r2, r) : C∞0 (B(x, r) ∩Ω)), for each s − r2 < t1 < t2 < s we have∫ t2

t1

∫
B(x,r)∩Ω

vtΦ + ∇v∇Φ + λ1
vΦ

1 + d2+σ
dmdt = 0,

where dm = φ2dx and σ > 0.

We denote here by H1
φ(B(x, r) ∩Ω) the space which consists of all functions u : B(x, r) ∩Ω → R such that, ∇u

exists in the weak sense and

||u||2H1
φ(B(x,r)∩Ω) =

∫
B(x,r)∩Ω

|∇u|2φ2dx +

∫
B(x,r)∩Ω

u2

1 + d2+σ
φ2dx < ∞.

By Definition 5.2.1 of weak solution, we note that the choice of the test function plays an important role in our analysis.

Thus for this reason we have the following theorem which proof is in [FMoT3].

Theorem 5.2.2. Let n ≥ 2 and U ⊂ Rn be a smooth bounded domain. Then we have

H1
0(U, d(y)dy) = H1(U, d(y)dy).

Here H1(U, d(y)dy) denotes the set

{v = v(y) : ||v||2H1
1

=

∫
U

d(|∇v|2 + v2)dy < ∞}.

proof: By Theorem 7.2 in [K] it is well known that the set C∞(U) is dense in H1(U, d(y)dy). Thus for any v ∈

H1(U, d(y)dy) there exists vm ∈ C∞(U) such that for ε
2 > 0 we have ||v − vm||H1

1
< ε

2 for all m ≥ m(ε). Let us choose
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w := vm(ε) and let us define for k ≥ 2

φk =

{ 0 d(x) ≤ 1
k2

1 +
ln(kd(x))

ln k
1
k2 ≤ d(x) ≤ 1

k

1 d(x) ≥ 1
k

Setting wk = w(1 − φk), we then have

||w − wk ||
2
H1

1
=

∫
U

d(|∇(w − wk)|2 + (w − wk)2)dy

≤ 2
∫

U
d(|∇w|2(1 − φk))dy + 2

∫
U

d(|∇(1 − φk)|2w2)dy

≤ 2
∫

d(x)≤y
d(|∇w|2)dy + 2

∫
1

k2 ≤d(x)≤ 1
k

d(
|∇d|2

d2k2 ln2 k
w2)dy

≤
2
k
||w||H1

1
+

2
ln2 k
||w||H1

1
≤
ε2

4
, ∀k ≥ k0,

where we have choose k0 large enough. Thus

||v − wk ||H1
1
≤ ||v − w||H1

1
+ ||w − wk ||H1

1
≤ ε,

and the desired result follows. �

5.2.1 Properties of Subsolutions

Similarly with Definition 5.2.1, we call a function v ∈ C1((s− r2, r) : H1
φ(B(x, r) ∩Ω)) subsolution of (5.0.3) if for each

0 ≤ Φ ∈ C1
0((s − r2, r) : C∞0 (B(x, r) ∩Ω)) and for each s − r2 < t1 < t2 < s we have

(5.2.14)
∫ t2

t1

∫
B(x,r)∩Ω

vtΦ + ∇v∇Φ + λ1
vΦ

1 + d2+σ
dmdt ≤ 0,

where dm = φ2dx.

Theorem 5.2.3. Let Ω ⊂ Rn be an exterior domain not containing the origin, ν ≥ n + 1, γ ∈ (1, 2) and p ≥ 0. Then

there exist constant β(Ω) and C(ν, λ1, c0) such that for all x ∈ Ω with γr < c0 and for any positive subsolution v of

(5.0.3) in Q we have the estimate

sup
Qδ

|v|p ≤
C

(δ′ − δ)ν+2r2V(x, r)

∫
Qδ′

|v|pdxdt,

for each 0 < δ < δ′ ≤ 1.

proof: First we consider the case where d(x) < γr.

Set u = v + ε, then u is bounded away from zero (at the end of the argument we send ε to origin). Thus by (5.2.14) we

have for any Φ ∈ C∞0 B(x,R) ∩Ω∫
B(x,R)∩Ω

utΦ + ∇u∇Φ + λ1
uΦ

1 + d2+σ
dm ≤ ε|λ1|

∫
B(x,R)∩Ω

Φu
1 + d2+σ

≤ |λ1|

∫
B(x,R)∩Ω

uΦdm.(5.2.15)
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Let G : [0 : ∞) → [0,∞) be a piecewise C1 function such that G(s) = as for large s and G(0) = 0. Assume that

G has a non-negative, non-decreasing derivative G′(s). Hence, G is non-decreasing and G(s) ≤ sG′(s). Finally define

H(s) ≥ 0 by H(s) =
√

G′(s), H(0) = 0. Observe that H(s) ≤ sH′(s) as well. Due to Theorem 5.2.2 there exists a

sequence of functions um in C∞(B(x, r) ∩Ω) having compact support in Ω such that uk → u in H1(B(x, r)∩Ω, d(y)dy).

Since φ ∼ d
1
2 , we have that uk → u in H1

φ(B(x, r) ∩ Ω). Hence for any ∀ ψ ∈ C∞0 B(x,R) ∩Ω and k ≥ 1 the function

Φ = ψ2G(uk) is an admissible test function, that is, the following holds true:∫
B(x,R)∩Ω

vtψ
2G(uk) + ∇v∇(ψ2G(uk)) + λ1

vψ2G(uk)
1 + d2+σ

dm ≤ |λ1|

∫
B(x,R)∩Ω

uψ2G(uk)dm.

Passing to the limit k → ∞ we have∫
B(x,R)∩Ω

vtψ
2G(u) + ∇v∇(ψ2G(u)) + λ1

vψ2G(u)
1 + d2+σ

dm ≤ |λ1|

∫
B(x,R)∩Ω

uψ2G(u)dm⇒

∫
B(x,R)∩Ω

utψ
2G(u)dm +

∫
B(x,R)∩Ω

ψ2G′(u)|∇u|2 + 2ψG(u)∇u∇ψdm

≤ 2|λ1|

∫
B(x,R)∩Ω

uψ2G(u)dm.(5.2.16)

Now

2
∫
B(x,R)∩Ω

ψG(u)∇u∇ψdm ≥ −2
∫
B(x,R)∩Ω

ψuG′(u)|∇u||∇ψ|dm,

where we have used the fact that G(u) ≤ uG′(u). Finally by Hölder inequality we have

2
∫
B(x,R)∩Ω

ψG(u)∇u∇ψdm ≥ −
1
2

∫
B(x,R)∩Ω

ψ2G′(u)|∇u|2dm −C
∫
B(x,R)∩Ω

ψ2u2G′(u)|∇ψ|2dm.

Combining now the last inequality and (5.2.16), we have∫
B(x,R)∩Ω

utψ
2G(u)dm +

1
2

∫
B(x,R)∩Ω

ψ2G′(u)|∇u|2dm

≤ C
∫
B(x,R)∩Ω

ψ2u2G′(u)|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

u2ψ2G′(u)dm.(5.2.17)

Then, we note that

|∇(ψH(u))|2 = (∇ψH(u) + ψH′(u)∇u)2 = |∇ψ|2H2(u) + ψ2|H′(u)|2|∇u|2 + 2ψH(u)H′(u)∇ψ∇u

≤ 2|∇ψ|2H2(u) + 2ψ2|H′(u)|2|∇u|2 ≤ 2(|∇ψ|2u2H′2(u) + ψ2|G′(u)||∇u|2)

≤ 2(|∇ψ|2u2|G′(u)| + ψ2|G′(u)||∇u|2).

Hence, we have∫
B(x,R)∩Ω

|∇(ψH(u))|2dm ≤ 2
∫
B(x,R)∩Ω

|∇ψ|2u2|G′(u)|dm + 2
∫
B(x,R)∩Ω

ψ2|G′(u)||∇u|2dm.



5.2. Moser’s Iteration 83

Using the above inequality in (5.2.17), we have∫
B(x,R)∩Ω

utψ
2G(u)dm +

1
4

∫
B(x,R)∩Ω

|∇(ψH(u))|2dm

≤ C
∫
B(x,R)∩Ω

ψ2u2G′(u)|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

u2ψ2G′(u)dm.

We note here that, the above integrals are all finite since G′(s) = s and H(s) = αs for s large enough. Now multiplying

the last inequality by a function χ(t), we have

d
dt

∫
B(x,R)∩Ω

ψ2F2(u)χdm +
1
4

∫
B(x,R)∩Ω

|∇(ψH(u))|2dm

≤ C
∫
B(x,R)∩Ω

χψ2u2G′(u)|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

χu2ψ2G′(u)dm.

+

∫
B(x,R)∩Ω

uψ2G(u)χtdm

≤ C
∫
B(x,R)∩Ω

ψ2u2G′(u)|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

u2ψ2G′(u)dm

+

∫
B(x,R)∩Ω

|u|2ψ2|G′(u)|2|χt |dm,(5.2.18)

where F is a function such that 2F′(s)F(s) = G(s).Given R > r > 0, we choose χ(t) ∈ H1
0(R) such that 0 ≤ χ ≤ 1, χ(t) =

1 in (s− r2,∞), χ(t) = 0 in (−∞, s−R2) and |χ′| ≤ 1
(R−r)2 . Also we choose a function ψ = ξ(|y′ − x′|)ξ(|yn −a(y′)−d(x)|),

where ξ ∈ C∞(R) and satisfies 0 ≤ ξ ≤ 1, ξ(s) = 1 if s ≤ r and ξ(s) = 0 if s > R. Then clearly we have |∇ψ| ≤ 1
R−r .

Now, we integrate (5.2.18) from zero to t for some t ∈ (s − R2, s) and letting t go to s, we have

sup
t∈(s−r2,s)

∫
B(x,R)∩Ω

ψ2F2(u)χdm +
1
4

∫ s

s−r2

∫
B(x,R)∩Ω

|∇(ψH(u))|2dmdt

≤
C + 2|λ|c0

(R − r)2

∫ s

s−R2

∫
B(x,R)∩Ω

u2|G′(u)|dmdt.(5.2.19)

Now fix some large N. Set

HN(s) =

{ s
p
2 s ≤ N

N
p
2 −1s s > N

GN(s) =

∫ s

0
|H′(t)|2dt =

p2

4(p − 1)

{ sp−1 s ≤ N

N
4(p−1)

p2 N p−2(s − N) + N p−1 s > N

F2
N(s) =

∫ s

0
|H′(t)|2dt =

p2

4(p − 1)

{ sp

p s ≤ N

N
4(p−1)

p2 N p−2 (s−N)2

2 + N p−1(s − N) + N p

p s > N

For any p ≥ 2. These G′N s, H′N s, F′N s have the required properties and we note that F2
N ≥

p
4(p−1) H2

N . Thus (5.2.19)

becomes

p
4(p − 1)

sup
t∈(s−r2,s)

∫
B(x,R)∩Ω

ψ2H2
N(u)χdm +

1
4

∫ s

s−r2

∫
B(x,R)∩Ω

|∇(ψHN(u))|2dmdt

≤
C(λ1, c0)
(R − r)2

∫ s

s−R2

∫
B(x,R)∩Ω

u2|G′N(u)|dmdt.(5.2.20)
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Also we have∫
B(x,r)∩Ω

|HN(u)|2+ 4
ν dm =

∫
B(x,R)∩Ω

|ψHN(u)|2+ 4
ν dm

≤ E
( ∫
B(x,R)∩Ω

|∇(ψHN(u))|2dm
)(

sup
t∈(s−r2,s)

∫
B(x,R)

|ψHN(u)|2dm
) 2
ν

⇒

∫ s

s−r2

∫
B(x,R)∩Ω

|HN(u)|2+ 4
ν dmdt ≤ E

(C(λ1, c0)
(R − r)2

∫ s

s−R2

∫
B(x,R)∩Ω

u2|G′N(u)|dmdt
)1+ 2

ν

,

where in the last inequality we have used Theorem 5.1.7 with the constant E = CMr2V
−2
ν and (5.2.20). We note here

that we can use Theorem 5.1.7 for the function ψHN(u). Since by Theorem 5.2.2 there exists a sequence of functions uk

in C∞(B(x, r) ∩Ω) having compact support in Ω such that uk → ψ2HN(u) in H1(B(x, r) ∩ Ω, d(y)dy) and since φ ∼ d
1
2

we have that uk → u in H1
φ(B(x, r) ∩Ω). Thus we have,∫

B(x,r)∩Ω

|uk(y)|2(1+ 2
ν )dm

≤ CMr2V(x, r)−
2
ν

∫
B(x0,r)∩Ω

|∇uk(y)|2dm
( ∫
B(x0,r)∩Ω

|uk(y)|2dm
) 2
ν

,

and passing to the limit k → ∞∫
B(x,r)∩Ω

|ψ2HN(u)|2(1+ 2
ν )dm

≤ CMr2V(x, r)−
2
ν

∫
B(x,r)∩Ω

|∇(ψ2HN(u))|2dm
( ∫
B(x,r)∩Ω

|ψ2HN(u)|2dm
) 2
ν

.

Hence combining all the above we have,

(5.2.21)
∫ s

s−r2

∫
B(x,r)∩Ω

|HN(u)|2+ 4
ν dmdt ≤ E

(C(λ1, c0)
(R − r)2

∫ s

s−R2

∫
B(x,r)∩Ω

u2|G′N(u)|dmdt
)1+ 2

ν

.

Moreover as N → ∞ HN(s)→ s and G′N(s)→ p2

2 sp−2. Thus the inequality (5.2.21) becomes

(5.2.22)
∫ s

s−r2

∫
B(x,r)∩Ω

up(1+ 2
ν )dmdt ≤ E

(C(λ1, c0)
(R − r)2

p2

2

∫ s

s−R2

∫
B(x,r)∩Ω

updmdt
)1+ 2

ν

,

provided the integral on the left hand to be bounded. We note that by iteration for p0 = p, p1 = p(1 + 1
ν
), ..., pi =

p
(
1 + 1

ν

)i
that ∫ s

s−r′′2

∫
B(x,r′′)

upi dmdt < ∞, ∀ i ≥ 0 and r′′ < r′.

Thus by same argument as before we have for r < R

(5.2.23)
∫ s

s−r2

∫
B(x,r)

upi+1 dmdt ≤ E
(C(λ1, c0)

(R − r)2

p2
i

2

∫ s

s−R2

∫
B(x,R)

upi dmdt
)1+ 2

ν

,

Now set δ0 = δ′r and ri = δ′ − (δ′ − δ)
∑i

j=1 2− j. Then ri − ri+1 = (δ′ − δ)2−i−1 and pi+1 = pi(1 + 2
ν
). Thus inequality

(5.2.23) becomes ∫ ∫
Qri+1

upi+1 dmdt ≤ E
(C(λ1, c0)22(i+1)

r2(δ′ − δ)2 p2
i

∫ ∫
Qri

upi dmdt
)1+ 2

n

⇔
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( ∫ ∫
Qri+1

upi+1 dmdt
) 1

pi+1
≤ E

1
pi+1

(C(λ1, c0)22(i+1)

r2(δ′ − δ)2

) 1
pi
(
p2

i

∫ ∫
Qri

upi dmdt
) 1

pi

≤ E
1

pi+1
+ 1

pi

( C(λ1, c0)
r2(δ′ − δ)2

) 1
pi

+ 1
pi−1

2
2(i+1)

pi
+ 2i

pi−1 p
2
pi
i p

2
pi−1
i−1

( ∫ ∫
Qri−1

upi−1 dmdt
) 1

pi−1

≤ E
∑i+1

j=1

( C(λ1, c0)
r2(δ′ − δ)2

) 1
p
∑i

j=0
1

Θ j

4
1
p
∑i

j=0
j+1
Θ j e

∑i
j=0 Θ− jlog(pΘ j)

( ∫ ∫
Qr0

up0 dmdt
) 1

p0
,

where Θ = 1 + 2
ν
.Observe now that ri → δ as i→ ∞, all sum above are finite and

∑∞
j=0 Θ− j = ν

2 + 1. Hence we have,

sup
Qδ

|u|p ≤ E
ν
2

C(λ1, p, ν, c0)
(δ′ − δ)ν+2rν+2

∫
Qδ′

|u|pdmdt, ∀ p ≥ 2.

where E = CMr2V−
2
ν (x, r). We note here that the inequality which we used to reach the desired result is (5.2.23) for

p = 2. Thus the function u ∈ Lp
loc(Q) for p ≥ 2, and we have the inequality (5.2.23) for any p ≥ 2. Also we note that

since u ∈ L∞loc(Q) we can set G(t) = tp−1 and by the same arguments to reach to the desired result where the constant is

independent on p.

Now we prove the statement for p ∈ (0, 2). We have shown that for any Θ ∈ (0, 1)

sup
QΘ

|u| ≤
( C(λ1, ν, c0)
((1 − Θ)r)n+2

∫
Q
|u|2dmdt

) 1
2

.

For p ∈ (0, 2) we have ∫
Q
|u|2dxdt ≤ ||u||2−p

L∞(Q)

∫
Q
|u|pdmdt.

Hence,

sup
QΘ

|u| ≤
( C
((1 − Θ)r)n+2 ||u||

2−p
L∞(Q)

∫
Q
|u|pdxdt

) 1
2

≤
1
2
||u||L∞(Q) +

C

((1 − Θ)r)
n+2

p

||u||Lp(Q),

where in the last inequality we have used the Hölder inequality. Now set f (θ) = supQθ
|u|, then for any Θ ∈ (0, 1) we

have

f (Θ) ≤
1
2

f (1) +
C

((1 − Θ)r)
n+2

p

||u||Lp(Q).

We apply the Lemma 5.2.4 to get

f (Θ) ≤
C

((1 − Θ)r)
n
p
||u||Lp(Q),

which is the desired result for 0 < p < 2.

If d(x) ≥ γr, we do the same approach as before, but for the admissible test function we set ψ(y) = ξ( |x−y|
R ) instead of

ξ(|y′ − x′|)ξ(|yn − a(y′) − d(x)|) and we use the fact that B(x, r) = B(x, r) (thus we don’t need to use of Theorem 5.2.2).

�

Lemma 5.2.4. Let f (t) ≥ 0 be bounded in [t0, t1] with t0 ≥ 0. Suppose for t0 ≤ t < s ≤ t1, we have

f (t) ≤ Θ f (s) +
A

(s − t)a + B,
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for some Θ ∈ (0, 1) and a ≥ 0. Then for any t0 ≤ t < s ≤ t1 there holds

f (t) ≤ C(Θ, a)(
A

(s − t)a + B).

proof: Fix t0 ≤ t < s ≤ t1. For some 0 ≤ τ < 1, we consider the sequence {ti} defined by t0 = t and ti+1 =

ti + (1 − τ)τi(s − t). Note t∞ = s, since ti+1 = t0 +
∑i

j=0(1 − τ)τ j(s − t)→ s.

By iteration

f (t) ≤ Θ f (t1) +
A

(t1 − t0)a + B ≤ ... ≤ Θk f (tk) + [
A

(s − t)a + B]
k−1∑
i=0

Θiτ−ia,

choose τ < 1 such that Θτ < 1, that is, Θ < ta < 1.

As k tend to infinity, we have

f (t) ≤ C(Θ)((1 − τ)−a A
(s − t)a + B).

�

5.2.2 Properties of Super Solutions

Similarly with Definition 5.2.1, we call a function v ∈ C1((s − r2, r) : H1
φ(B(x, r) ∩Ω)) supersolution of (5.0.3) if for

each 0 ≤ Φ ∈ C1
0((s − r2, r) : C∞0 (B(x, r) ∩Ω)) and for each s − r2 < t1 < t2 < s we have

(5.2.24)
∫ t2

t1

∫
B(x,r)∩Ω

vtΦ + ∇v∇Φ + λ1
vΦ

1 + d2+σ
dmdt ≥ 0,

where dm = φ2dx.

Theorem 5.2.5. Let Ω ⊂ Rn be a exterior domain not containing the origin, ν ≥ n + 1, γ ∈ (1, 2) and p ≥ 0. Then there

exist constant c0(Ω) and C(ν, λ1, c0) such that for all x ∈ Ω with γr < c0 and for any positive supersolution v of (5.0.3)

in Q, we have the estimate

sup
Qδ

|v|−p ≤
C

(δ′ − δ)n+2r2V(x, r)

∫
Qδ′

|v|−pdmdt,

for each 0 < δ < δ′ ≤ 1.

proof: Set u = v + ε, then u is bounded away from zero (at the end of the argument we send ε to origin). Thus by

(5.2.24) we have for any Φ ∈ C∞0 (B(x,R) ∩Ωc)∫
B(x,R)∩Ω

utΦ + ∇u∇Φ + λ1
uΦ

1 + d2+σ
dm ≥ ε|λ1|

∫
B(x,R)∩Ω

Φu
1 + d2+σ

dm

≥ −|λ1|

∫
B(x,R)∩Ω

uΦdm.

We set Φ = −βuβ−1ψ2, where 0 ≤ ψ ∈ C∞0 (B(x,R)) and β < 0. As φ ∈ H1
0(B(x,R)), we have Φxi = −2βuβ−1ψψxi − β(β−

1)uβ−2ψ2uxi . By the same arguments as in Theorem 5.2.3, Φ is a admissible test function (if d(x) ≤ γr), thus we can use

it in (5.2.2) to yield

− β

∫
B(x,R)∩Ω

uβ−1ψ2utdm − 2β
∫
B(x,R)∩Ω

ψuβ−1∇u∇ψdm − β(β − 1)
∫
B(x,R)∩Ω

ψ2uβ−2|∇u|2dm

≥ −2|λ1||β|

∫
B(x,R)∩Ω

uβdm
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Now we set w = u
β
2 . Then wxi =

β
2 u

β
2−1uxi and the above inequality becomes

−

∫
B(x,R)∩Ω

ψ2(w2)tdm − 4
∫
B(x,R)∩Ω

ψw∇w∇ψdm − 4
β − 1
β

∫
B(x,R)∩Ω

ψ2|∇w|2dm

≥ −2|λ1||β|

∫
B(x,R)∩Ω

ψ2w2dm(5.2.25)

Now,

4|
∫
B(x,R)∩Ω

ψw∇w∇ψdm| ≤ 4
∫
B(x,R)∩Ω

|ψ||w||∇w||∇ψ|dm

≤ λ

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm + C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm.

Thus by the above inequality and (5.2.25) we have∫
B(x,R)∩Ω

ψ2(w2)tdm + 4
|β| + 1
|β|

∫
B(x,R)∩Ω

ψ2|∇w|2dm − λ
∫
B(x,R)∩Ω

|ψ|2|∇w|2dm

≤ C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1||β|

∫
B(x,R)∩Ω

ψ2w2dm.

Finally if we choose λ = 1 then 4 |β|+1
|β|
− λ > 1 and the above inequality becomes

∫
B(x,R)∩Ω

ψ2(w2)tdm +

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm

≤ C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1||β|

∫
B(x,R)∩Ω

ψ2w2dm.(5.2.26)

Also, ∫
B(x,R)∩Ω

ψ2(w2)tdm +
1
2

∫
B(x,R)∩Ω

|∇(ψw)|2dm =

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1
2

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm

+
1
2

∫
B(x,R)∩Ω

|w|2|∇ψ|2dm +

∫
B(x,R)∩Ω

ψw∇ψ∇w)|2dm

≤

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1
2

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm +
1
2θ

∫
B(x,R)∩Ω

|w|2|∇ψ|2dm

+
1
2

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm +
1
2

∫
B(x,R)∩Ω

|w|2|∇ψ|2dm

≤ C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1||β|

∫
B(x,R)∩Ω

ψ2w2dm.

Now working as Theorem 5.2.3 we have

∫ s

s−r2

∫
B(x,R)∩Ω

|w|2+ 4
ν dmdt ≤ E

(C + 2c0|β||λ1|

(R − r)2

∫ s

s−R2

∫
B(x,R)∩Ω

w2dmdt
)1+ 2

ν

,

where E = CMr2V
−2
ν is the constant of Theorem 5.1.7. Replace now w = u

β
2 , we get

∫ s

s−r2

∫
B(x,R)∩Ω

|u|β(1+ 2
ν )dmdt ≤ E

(C + 2c0|β||λ1|

(R − r)2

∫ s

s−R2

∫
B(x,R)∩Ω

uβdmdt
)1+ 2

ν

.

This is the analogue of Theorem 5.2.3 and the iterative steps give the desired result. �
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In order to state the next result we need to introduce the following notation.

Q′δ = (s − r2, s − (1 − δ)r2) ×B(x, δr) ∩Ω

Theorem 5.2.6. Fix 0 < p0 < Θ = 1 + 2
ν
, ν ≥ n + 1, γ ∈ (1, 2). Then there exist constant β(Ω) and C(ν, λ1, c0) such that

for all x ∈ Ω with γr < c0, for any 0 < p < p0
Θ

and for any positive supersolution v of (5.0.3) in Q, we have the estimate

( ∫
Q′δ

|u|p0φ2dydt
) p0

p

≤

( A
(δ′ − δ)(2+ν)(1+Θ)r2Vν(x, r)

)1− p
p0

∫
Q′
δ′

|u|pφdydt,

for each 0 < δ < δ′.

proof: First the case d(x) < γr

Set u = v +ε, then u is bounded away from zero (at the end of the argument we send ε to origin). Thus by the definition

of supersolutions we have for any Φ ∈ C∞0 B(x,R) ∩Ω∫
B(x,R)∩Ω

utΦ + ∇v∇Φ + λ1
uΦ

1 + d2+σ
dm ≥ ε|λ1|

∫
B(x,R)∩Ω

Φu
1 + d2+σ

dm

≥ −|λ1|

∫
B(x,R)∩Ω

uΦdm.(5.2.27)

We set Φ = βuβ−1ψ2, where 0 ≤ ψ ∈ C∞0 (B(x,R)) and 0 < β < p0
Θ
. As φ ∈ H1

0(B(x,R)), we have Φxi = 2βuβ−1ψψxi +

β(β − 1)uβ−2ψ2uxi . By the same arguments as in Theorem 5.2.3, Φ is a admissible test function , thus we can use it in

(5.2.27) to yield

β

∫
B(x,R)∩Ω

uβ−1ψ2utdm + 2β
∫
B(x,R)∩Ω

ψuβ−1∇u∇ψdm + β(β − 1)
∫
B(x,R)∩Ω

ψ2uβ−2|∇u|2dm

≥ −2|λ1|

∫
B(x,R)∩Ω

uβdm

Now we set w = u
β
2 . Then wxi =

β
2 u

β
2−1uxi and the above inequality becomes∫

B(x,R)∩Ω

ψ2(w2)tdm + 4
∫
B(x,R)∩Ω

ψw∇w∇ψdm + 4
β − 1
β

∫
B(x,R)∩Ω

ψ2|∇w|2dm

≥ −2|λ1|

∫
B(x,R)∩Ω

ψ2w2dm(5.2.28)

Now,

4|
∫
B(x,R)∩Ω

ψw∇w∇ψdm| ≤ 4
∫
B(x,R)∩Ω

|ψ||w||∇w||∇ψ|dm

≤ λ

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm + C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm.

Thus by the above inequality and (5.2.28) we have

−

∫
B(x,R)∩Ω

ψ2(w2)tdm + (1 −
p0

Θ
)
∫
B(x,R)∩Ω

ψ2|∇w|2dm − λ
∫
B(x,R)∩Ω

|ψ|2|∇w|2dm(5.2.29)

≤ C(λ)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

ψ2w2dm.
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Finally if we choose λ =
1− p0

Θ

2 then the above inequality becomes

−

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1 − p0

Θ

2

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm

≤ C(p0, ν)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

ψ2w2dm.(5.2.30)

Also,

−

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1 − p0

Θ

4

∫
B(x,R)∩Ω

|∇(ψw)|2dm

= −

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1 − p0

Θ

4

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm

+
1 − p0

Θ

4

∫
B(x,R)∩Ω

|w|2|∇ψ|2dm +
1 − p0

Θ

4

∫
B(x,R)∩Ω

ψw∇ψ∇wdm

≤ −

∫
B(x,R)∩Ω

ψ2(w2)tdm +
1 − p0

Θ

2

∫
B(x,R)∩Ω

|ψ|2|∇w|2dm +
1 − p0

Θ

2

∫
B(x,R)∩Ω

|w|2|∇ψ|2dm

≤ C(p0, ν)
∫
B(x,R)∩Ω

|w|2|∇ψ|2dm + 2|λ1|

∫
B(x,R)∩Ω

ψ2w2dm.

Now multiply the above inequality by a bounded function χ2(t) ∈ C∞(R) to reach

−
d
dt

∫
B(x,R)∩Ω

χ2ψ2w2dy +
1 − p0

Θ

2

∫
B(x,R)∩Ω

χ2|∇(ψw)|2dy

≤ C(ν, p0)||χ||L∞ (||χ||L∞ ||∇ψ||2L∞ + ||χ′||L∞ + |λ1|)
∫
B(x,R)∩Ω

|w|2dy.(5.2.31)

we choose χ(t) ∈ C1(R) such that 0 ≤ χ ≤ 1, χ(t) = 1 in (−∞, s − (1 − δ)r2), χ(t) = 0 in (s − (1 − δ′)r2,∞)

and |χ′| ≤ 1
r2(δ′−δ)2 . Also we choose a function ψ = ξ(|y′ − x′|)ξ(|yn − a(y′) − d(x)|), where ξ ∈ C∞(R) and satisfies

0 ≤ ξ ≤ 1, ξ(s) = 1 if s ≤ δr and ξ(s) = 0 if s > δ′r. Now, we integrate (5.2.31) from t to s − (1 − δ′)r2 for some

t ∈ (s − r2, s − (1 − δ′)r2) and letting t go to s − r2 we have

sup
t∈(s−r2,s−(1−δ)r2)

∫
B(x,R)∩Ω

χ2ψ2w2dm +
1 − p0

Θ

2θ

∫ s−(1−δ′)r2

s−r2

∫
B(x,R)∩Ω

χ2|∇(ψw)|2dm

≤
C(ν, p0, c0)
(δ′ − δ)2r2

∫ s−(1−δ′)r2

s−r2

∫
B(x,R)∩Ω

|w|2dm,

thus we have as in Theorem (5.2.3),∫ ∫
Q′δ

|w|(1+ 2
n )dmdt ≤ E

(C(n, θ, p0)
r2(δ′ − δ)2

∫
Q′
δ′

w2dmdt
)1+ 2

n

⇔

(5.2.32)
∫ ∫

Q′δ

|u|βΘdmdt ≤ E
(C(ν, p0, c0)

r2(δ′ − δ)2

∫
Q′
δ′

uβdmdt
)Θ

,

for all 0 < β < p0
Θ

and for E = CMr2V−
2
ν (x, r) Define now pi = p0Θ−i, ri = δ′ − (δ′ − δ)

∑i
j=1 2− j and r0 = δ′. Now since
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piΘ j−1 < p0
Θ
, we have by (5.2.32) for any j = 1, .., i

∫ ∫
Q′ri

|u|piΘ
j
dydt ≤ E

(22 jC(ν, c0, p0)
r2(δ′ − δ)2

∫
Q′ri−1

upiΘ
j−1

dydt
)Θ

≤ E
∑ j−1

k=0 Θk
(C(ν, c0, p0)

r2(δ′ − δ)2

)∑ j
k=1 Θk

4
∑ j

k=1( j−k+1)Θk
( ∫

Q′ri− j+1

upi dydt
)Θ j

.

The above inequality holds for all j = 1, ..., i. Thus for j = i we have

∫ ∫
Q′ri

|u|p0 dydt ≤ E
∑ j−1

k=0 Θk
(C(ν, c0, p0)

r2(δ′ − δ)2

)∑i
k=1 Θk

4
∑i

k=1(i−k+1)Θk
( ∫

Q′r0

upi dydt
)Θi

.

Finally we note that∑i
k=0(i − k + 1)Θk ≤ ( ν2 )3Θ( p0

pi
− 1)

ri > δ∑ j−1
k=0 Θk = ν

2 ( p0
pi
− 1)∑i

k=1 Θk = (1 + ν
2 )(( p0

pi
− 1)).

Thus we have ∫ ∫
Q′δ

|u|p0 dydt ≤ E
n
2 ( p0

pi
−1)

(C(ν, c0, p0)
r2(δ′ − δ)2

)(1+ n
2 )( p0

pi
−1)( ∫

Q′r0

upi dydt
) p0

pi
.

To obtain the desired inequality for any p ∈ (0, p0
Θ

), let i ≥ 2 be the integer such that pi ≤ p ≤ pi−1. Then 1
pi
− 1

p0
≤

(1 + Θ)( 1
p −

1
p0

). Thus, by Jensen’s inequality we have

∫ ∫
Q′δ

|u|p0 dmdt ≤ E
n
2

(C(n, θ, p0)
(δ′ − δ)2

)(1+Θ)(1+ ν
2 )( p0

p −1)( 1
r2

)(1+ ν
2 )( p0

pi
−1)( ∫

Q′r0

upi dmdt
) p0

pi

≤ E
ν
2

(C(ν, c0, p0)
(δ′ − δ)2

)(1+Θ)(1+ ν
2 )( p0

p −1)( 1
r2

)(1+ ν
2 )( p0

pi
−1)

V
p0
pi
−

p0
p (x, r)

( ∫
Q′r0

updydt
) p0

p

,

which is the desired result since E = CMr2V
−2
ν . If d(x) ≥ γr, we do the same approach as before. But for the admissible

test function we set ψ(y) = ξ( |x−y|
R ) instead of ξ(|y′ − x′|)ξ(|yn − a(y′) − d(x)|) and we use the fact that B(x, r) = B(x, r)

(thus we not need the use of Theorem 5.2.2). �

5.3 Harnack Inequality
In the following lemma we see the importance of Theorem 5.1.6.

Lemma 5.3.1. Let v be any positive supersolution of problem (5.0.3) in (s − r2, s) × B(x, r) ∩ Ω, where γr < c0 and

γ ∈ (1, 2). Then there exists a constant c = c(u, η, c0) such that, for all λ > 0,

µ({(t, z) ∈ K+ : log v < −λ − c}) ≤ Cr2+nλ−1

and

µ({(t, z) ∈ K− : log v > λ − c}) ≤ Cr2+nλ−1,

where µ = φ2dxdt K+ = (s − ηr2, s) × B(x, δr) ∩ Ω and K− = (s − r2, s − ηr2) × B(x, δr) ∩ Ω. Here the constant C is

independent of λ > 0, v, s and the radius r.

proof: Note that δ and η play somewhat different roles here. The parameter δ is used to stay away from the boundary
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of the ball B. The parameter η is used to define a fixed point s′ = s− ηr2 in the interval (s− r2, s) away from s− r2 and

s.

Let us first observe that (by changing δ) we can assume that v is a super-solution in (s − r2, s) × B(x, δr) ∩ Ωc where

B′ is a concentric ball larger than B(x, r). We set w = − log u, where u = v + ε. Then, for any non-negative function

ψ ∈ C∞0 (B′), we have

∂t(
∫
B(x,r)∩Ω

ψ2wdm) = −

∫
B(x,r)∩Ω

ψ2

u
utdm

≤

∫
B(x,r)∩Ω

∇u∇(
ψ2

u
)dm + 2|λ1|

∫
B(x,r)∩Ω

ψ2dm

≤ 2θ
∫
B(x,r)∩Ω

ψ|∇w||∇ψ|dm −
∫
B(x,r)∩Ω

ψ2|∇w|2dm + 2|λ1|

∫
B(x,r)∩Ω

ψ2dm

≤ −
1
2

∫
B(x,r)∩Ω

ψ2|∇w|2dm + C
∫
B(x,r)∩Ω

|∇ψ|2dm + 2|λ1|

∫
B(x,r)∩Ω

ψ2dm⇒

(5.3.33) ∂t(
∫
B(x,r)∩Ω

ψ2wdm) +
1
2

∫
B(x,r)∩Ω

ψ2|∇w|2dm ≤ C(||∇ψ||2∞ + 2|λ1|)µ(suppψ).

Here we have two cases.

First case d(x) < γr.

We choose ψ(y) = (1 − |x − y|/r)+(1 − |yn−a(y′)−d(x)
r )+. By Theorem 5.1.6 we have∫

B(x,r)∩Ω

|w −W |2ψ2dm ≤ A0r2
∫
B(x,r)∩Ω

|∇w|2ψ2dm,

with

W =

∫
B(x,r)∩Ω

wψ2dm∫
B(x,r)∩Ω

ψ2dm
.

Second case d(x) > γr.

Here, we choose ψ(y) = (1− |x − y|/r)+. Due to the fact that cφ(x) ≤ φ(y) ≤ Cφ(x) for any y ∈ B(x, r)∩Ω = B(x, r), by

Lemma (5.1.4), we have for ψ2(y) = Φ(y)∫
B(x,r)∩Ω

|w −W |2ψ2dm ≤ A0r2
∫
B(x,r)∩Ω

|∇w|2ψ2dm,

with

W(t) =

∫
B(x,r)∩Ω

wψ2dm∫
B(x,r)∩Ω

ψ2dm
.

Now using the fact that ∫
δB(x,r)

ψ2dx ≥ C(δ)V(x, r).

By (5.3.33), 1 ≤ c0
r and the weighted Poincaré inequalities, we have

Wt +
C(δ)
Vr2

∫
B(x,δr)∩Ω

|w −W |2ψ2dm

≤
∂t

∫
B(x,δr)∩Ω

wψ2dm

C(δ)V
+

C(δ)
V(x, r)r2

∫
B(x,δr)∩Ω

|w −W |2ψ2dm ≤ A2(c0, λ1)r−2,
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for some constants A1, A2 > 0. Rewrite this inequality as

(5.3.34) ∂tW ′ + (A1r2V(x, r))−1
∫
B(x,δr)∩Ωc

|w′ −W ′|2ψ2dm ≤ 0,

where

w′(t, z) = w(t, z) − A2r−2(t − s′),

W ′(t) = W(t) − A2r−2(t − s′),

with s′ = s − ηr2.

Now, set c(u, η) = W ′(s′) and

Ω+
t (λ) = {z ∈ B(x, δr) : w′(t, z) > c + λ}

Ω−t (λ) = {z ∈ B(x, δr) : w′(t, z) < c − λ}.

Then, if t > s′,

w′(t, z) −W ′(t) ≥ λ + c −W ′(s′) > λ,

in Ω+
t (λ), because c = W ′(s′) and ∂tW ′ ≤ 0. Using this in (5.3.34) we obtain

∂tW ′ + (Cr2V(x, r))−1|λ + c −W ′(t)|2|Ω+
t (λ)| ≤ 0,

or equivalently,

−Cr2V∂t((|λ + c −W ′(t)|)−1) ≥ m(Ω+
t (λ)).

Integrating from s′ to s, we obtain

µ({(t, z) ∈ K+ : w′(t, z) > c + λ}) ≤ Cr2V(|λ + c −W ′(s′)|)−1 ≤ Cr2V(x, r)λ−1

and returning to − log u = w = w′ + A2r−2(t − s′)

µ({(t, z) ∈ K+ : log u(t, z) < −c − λ}) ≤ µ({(t, z) ∈ K+ : log u(t, z)+ < −c −
λ

2
})

+ µ({(t, z) ∈ K+ : A2r−2(t − s′) >
λ

2
})

≤ Cr2Vλ−1 + µ({(t, z) ∈ K+ : A2r−2(t − s′) >
λ

2
}).

Now consider two cases.

1. 0 < λ ≤ 2ηA2, then

µ({(t, z) ∈ K+ : A2r−2(t − s′) >
λ

2
}) = µ({(t, z) ∈ K+ : t >

r2λ

2A2
+ s − ηr2})

≤ (−
r2λ

2A2
+ ηr2)+V(x, r) ≤ 2

η2A2r2

λ
V(x, r).

2. λ ≥ 2A2, then

(
−r2λ

2A2
+ ηr2)+ = 0

Thus, in all cases we have

µ({(t, z) ∈ K+ : log u < −λ − c}) ≤ Cr2V(x, r)λ−1.
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This proves the first inequality in this Lemma. Working with Ω−t instead of Ω+
t , we obtain the second inequality by the

same argument. The result follows by sending ε to origin. �

Let us prove an abstract lemma which we use in the following theorem.

Lemma 5.3.2. Fix 0 < δ < 1. Let γ, C be positive constants and 0 < α0 ≤ ∞. Let f be a positive measurable function

on U1 = U which satisfies,

|| f ||α0,Uσ′
≤ [C(σ − σ′)−γµ(U)−1]1/α−1/α0 || f ||α,Uσ

,

for all σ, σ′, α such that 0 < δ ≤ σ′ < σ ≤ 1 and 0 < α ≤ min{1, α0/2}. Assume further that f satisfies

µ(log( f ) > λ) ≤ Cµ(U)λ−1

for all λ > 0. Then

|| f ||α0,Uδ
≤ Aµ(U)1/α0 ,

where A depends only on δ, , γ, C and a lower bound on α0.

proof: For the proof, assume without loss of generality that µ(U) = 1 and || f ||α0,Uσ
> 1, also we assume that :

ψ = ψ(σ) = log(|| f ||α0,Uδ
) ≥ A1 > 0, f or 0 < δ ≤ σ < 1.

Where A1 depends only on a lower bound on α0, which we will determine later.

Decomposing now Uσ into the sets where log( f ) > ψ/2 and where log( f ) ≤ ψ/2, we get

|| f ||α,Uδ
=

( ∫
Uσ

| f |αdµ
)1/α

≤

( ∫
Uσ∩{log( f )>ψ/2}

| f |αdµ
)1/α

+

( ∫
Uσ∩{log( f )≤ψ/2}

| f |αdµ
)1/α

≤ || f ||α0,Uδ
µ(log( f ) > ψ/2)1/α−1/α0 + eψ/2 ≤ eψ

(2C
ψ

)1/α−1/α0

+ eψ/2.(5.3.35)

Here, we have used successively the Hölder inequality and the second hypothesis of the Lemma. Now, we want to

choose α so that the two terms in the right-hand side of (5.3.35) are equal and 0 < α ≤ min{1, α0/2}. This is possible if

(2C
ψ

)1/α−1/α0

= e−ψ/2 ⇔ 1/α − 1/α0 = (−ψ/2)
(

log
2C
ψ

)−1
⇒

1/α ≥ 1/α0 + C =
1 + α0C
α0

⇒ α ≤
α0

1 + α0C
≤ min{1, α0/2}

and the last inequality is certainly satisfied when

(5.3.36) ψ ≥ A1 ≥ max{2C, 1/α′},

where α′ is a lower bound on α0.

Assuming that (5.3.36) holds and that α has been chosen as above, then we obtain

(5.3.37) || f ||α0,Uσ
≤ 2eψ/2.

The first hypothesis of the Lemma and (5.3.37) yield

ψ(σ′) ≤ (1/α − 1/α0) log(C(σ − σ′)−γ) + ψ/2 + log2, f or < δ < σ′ < σ ≤ 1.
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By our choice of α, specified above, we have

ψ(σ′) ≤ ψ/2(
log(C(σ − σ′)−γ)

logψ/2C
+ 1) + log2.

On the one hand, if

(5.3.38) ψ ≥ 2C3(σ − σ′)−2γ,

we have

ψ(σ′) ≤ (3/4)ψ + log 2.

On the other hand, if one of the hypotheses (5.3.36), (5.3.38) made on ψ is not satisfied, we have

ψ(σ′) ≤ ψ ≤ A1 + 2C3(σ − σ′)−2γ.

Thus, in all cases, we obtain

(5.3.39) ψ(σ′) ≤ ψ ≤ A2 + 2C3(σ − σ′)−2γ,

where A2 depend only on C and on a lower bound on α0. For any sequence

0 < δ = σ0 < σ1 < ... < σi ≤ 1,

an iteration of (5.3.39) yield

ψ(σ0) ≤ (3/4)iψ(σi) + A2

i∑
j=0

(3/4) j(σ j+1 − σ j)−2γ

and while i tends to infinity, the last inequality becomes

ψ(σ0) ≤ A2

∞∑
j=0

(3/4) j(σ j+1 − σ j)−2γ

Now, if we set σ = 1 − (1 + j)−1(1 − δ), we have

∞∑
j=0

(3/4) j(σ j+1 − σ j)−2γ ≤ C(1 − δ)−2γ,

and the desired bound follows. �

The following Theorem states that positive super-solutions satisfy a weak form of Harnack inequality. For any fixed

τ > 0, δ ∈ (0, 1) and x ∈ M, s, r > 0 define

Q− = (s − (3 + δ)r2/4, s − (3 − δ)r2/4) ×B(x, δr) ∩Ω,

Q′− = (s − r2/4, s − (3 − δ)r2/4) ×B(x, δr) ∩Ω,

Q+ = (s − (1 + δ)r2/4, s) ×B(x, δr) ∩Ω.

Recall also that Q = Q(x, s, r) = (s − r2) ×B(x, r) ∩Ω. Let us now prove a lower bound for positive supersolutions.

Theorem 5.3.3. Fix p0 ∈ (0, 1 + 2
ν
). Then there exists a constant A such that, for x ∈ Ω, s ∈ R, 0 < r < c0 and any
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positive function supersolution u of problem (5.0.3) in Q, we have

( 1
µ(Q′−)

∫
Q′−

up0 dµ
)1/p0

≤ A inf
Q+

{u},

where µ = φ2dxdt.

proof: Fix a non-negative super-solution u. Let c(u, η) be the constant given by Lemma 5.3.1 applied to u with η = 1/2.

Set υ = ecu. Set also

Q1 = (s − r2, s − (1/2)r2) ×B(x, r) ∩Ω, Qσ = (s − r2, s − (3 − σ)r2/4) ×B(x, σr) ∩Ω.

By Theorem 5.2.6 we have

( ∫
Qσ′

up0 dµ
)p/p0

≤

[ A(p0, n)

(δ′ − δ)(2+n)(1+ 2
n )r2V(x, r)

]1−p/p0
∫

Qσ

updµ,

for all 0 < δ < σ′ < σ < 1 and 0 < p < p0(1 + 2
n )−1. By lemma 5.3.1 we have

| log υ > λ| = | log u > λ − c| ≤ Cµ(Q1)λ−1.

Thus we can apply Lemma 5.3.2 to conclude that
∫

Qδ
υp0 dxdt ≤ A1µ(Q), that is

(5.3.40)
( 1
µ(Q′−)

∫
Q′−

(ecu)p0 dµ
)1/p0

≤ A1.

Set now υ = e−cu−1, where c = c(u) is the same constant as above, given by Lemma 5.3.1, applied to u with η = 1/2.

This time set

Q′1 = (s − (1/2)r2, s) ×B(x, r), Q′σ = (s − (1 + σ)r2/4, s) ×B(x, σr).

By Theorem 5.2.3 we have

sup
Q′
σ′

{υp} ≤
A(p, ν)

(σ′ − σ)2+nr2V(x, r)

∫
Q′σ
υpdµ,

for all 0 < δ < σ < σ′ < 1 and 0 < p < ∞. By Lemma 5.3.1, we also have

µ(log υ > λ) ≤ Cm′(Q′1)λ−1.

Thus we can apply Lemma 5.3.2 to conclude that supQδ
{υ} ≤ A2µ(Q), that is

(5.3.41) sup
Q+

{(ecu)−1} ≤ A2.

Multiplying (5.3.40)and (5.3.41), we obtain

( 1
µ(Q′−)

∫
Q′−

up0 dxdt
)1/p0

≤ A inf
Q+

{u},

which is the desired inequality. �

Theorem 5.3.4. Fix 0 < δ < 1, then there exists a constant A such that, for x ∈ Ω, s ∈ R, 0 < r < c0 and any positive
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solution v of problem (5.0.3) in Q = (s − r2) ×B(x, r) ∩Ω, we have

sup
Q−
{v} ≤ A inf

Q+

{v},

where

Q− = (s − (3 + δ)r2/4, s − (3 − δ)r2/4) ×B(x, δr) ∩Ω

Q+ = (s − (1 + δ)r2/4, s) ×B(x, δr) ∩Ω.

proof: This follows immediately from Theorems 5.3.3 and 5.2.3. �

Corollary 5.3.5. Let R =
C0
4γ be the constant of Lemma 5.1.2. Let u be a non-negative solution of (∂t + Lφ)u = 0

in (0,T ) × Ω, T > 0. Then there exist constant A such that the following estimate is valid for all x, y ∈ Ω and all

0 < s < t < T.

log
u(s, x)
u(t, y)

≤ A
(
1 +

t − s
R2 +

t − s
s

+
|x − y|2

t − s

)
.

proof: Now, by our assumption on Ω we can assume that there exist a length curve γ : [a, b] → Ω, such that,

γ(a) = y, γ(b) = x and ||γ|| ≤ C0|x − y| where C0 depends on diameter of Ω. Then

φ1(x) − φ1(y) =

∫ b

a

d
dt

(φ1(γ(t)))dt =

∫ b

a
∇φ1(γ(t))γ̇(t)dt

≤

∫ b

a
|γ̇(t)|dt ≤ C0|x − y|.

Connect the points x y by balls B0, ...,Bk−1 of radius r
2 and centers x0, .., xk−1 with x0, ..., xk−1 ∈ γ and xi+1 ∈ Bi, 0 ≤

i ≤ k − 1 with xk = y. This is possible as soon as,

(5.3.42) kr ≥ 2|γ|.

The values of r and k are to be chosen later. Let t0 = s. ti = s + r2i, 0 ≤ i ≤ k. Now choose r to satisfy the following

conditions:

(i) r2 = (t − s)/k so that tk = t. Note that this implies t − s ≥ r2.

(ii) r ≤ R and r2 ≤ s so that u is a solution (∂t + Lφ)u = 0 in each of the cylinder (ti − r2, ti+1) × 2Bi 0 ≤ i ≤ k − 1.

Then, applying Theorem 5.3.4 successively in (ti − r2, ti) × 2Bi, 0 ≤ i ≤ k − 1, we obtain

u(t0, x0) ≤ A0u(t1, x1) ≤ A2
0u(t2, x2) ≤ ... ≤ Ak

0u(tk, xk),

that is,

u(s, x) ≤ Ak
0u(t, y).

Now, (5.3.42) is satisfied if k ≥ d2/(t − s) because kr =
√

k(t − s) by (i). Similarly, (ii) is satisfied as soon as



5.4. Localized Heat Kernel Bounds 97

k ≥ (t − s) max{1/R2, 1/s}. Thus, we can choose k of order

1 +
t − s
R2 +

t − s
s

+
d2

t − s
.

This gives the desired inequality. �

Definition 5.3.6. We will say that v ∈ C1((s − r2, r) : H1(B(x, r) ∩Ω)) is a weak solution of (5.0.1) if for each

Φ ∈ C1
0((s − r2, r) : C∞0 (B(x, r) ∩Ω)), for each s − r2 < t1 < t2 < s we have∫ t2

t1

∫
B(x,r)∩Ω

vtΦ + ∇v∇Φ + λ1
vΦ

4d2 dxdt = 0.

Corollary 5.3.7. Fix 0 < δ < 1, then there exists a constant A such that, for x ∈ Ωc, s ∈ R, 0 < r < c0 and any positive

solution u of problem (5.0.1) in Q = (s − r2) ×B(x, r) ∩Ω, we have

sup
Q−
{
u
φ
} ≤ A inf

Q+

{
u
φ
},

where

Q− = (s − (3 + δ)r2/4, s − (3 − δ)r2/4) ×B(x, δr) ∩Ω

Q+ = (s − (1 + δ)r2/4, s) ×B(x, δr) ∩Ω.

proof: If we set u = φv, then we note that v is a non-negative weak solution of problem (5.0.3). Thus by Theorem 5.3.4

we have

sup
Q−
{v} ≤ A inf

Q+

{v}

and the result follows. �

5.4 Localized Heat Kernel Bounds
We recall the first eigenvalue of the problem

−∞ < λ1 = inf
u∈C∞0 (Ω)

∫
Ω
|∇u|2dx − 1

4

∫
Ω

u2

d2∫
Ω

u2

1+d2+σ

,

where σ > 0. Also, we recall the ground state function φ in the introduction of this chapter. Let hφ(t, x, y) be the

respective heat kernel of the following problem

(5.4.43) vt = −(−Lφv) =
div(φ2∇v)

φ2 − λ1
v

1 + d2+σ
, in (0,T ] ×Ω.

We note here that if λ1 < 0, then we set h̃φ(t, x, y) = eλ1thφ(t, x, y). Then h̃φ(t, x, y) is the heat kernel of the problem

(5.4.44) vt =
div(φ2∇v)

φ2 − λ1
v

1 + d2+σ
+ λ1v, in (0,T ] ×Ω,

i.e. h̃φ(t, x, y) is positivity-preserving for all 0 ≤ t < ∞. Thus without loss of generality we assume that λ1 > 0.

In this section we prove the two side estimates for the heat kernel hφ.
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5.4.1 Localized Heat Kernel Upper Bounds

For any function φ1 ∈ C∞0 (Ω) with ||∇φ1||∞ ≤ 1 and any complex number a, consider the semigroup defined by

Ha,φ1
t f (x) = e−aφ1(x)

∫
hφ(t, x, y)eaφ1(y) f (x)dm = e−aφ1(x)Ht(eaφ1 f )(x).

It is clear that this is a well-defined semigroup of operators on the spaces Lp(Ω,m). Its infinitesimal generator is given

by

−Aa,φ1 f = −e−aφ1δ(eaφ1 f ).

When a is real this semigroup preserves positivity but there is no reason that it contracts Lp(Ω,m), for any 1 ≤ p ≤ ∞.

It is not self-adjoint but its adjoint simply H−a,φ1
t . The next lemma estimates the norm of this semigroups on L2(Ω,m).

Lemma 5.4.1. For any function φ1 ∈ C∞0 (Rn) with ||∇φ1||∞ ≤ 1 and any real number a, the semigroup (Ha,φ1
t )t>0

satisfies

∀t > 0, ||Ha,φ1
t ||2→2 ≤ ea2t.

proof: Set u(t) = ||Ha,φ1
t f ||22, f ∈ L2(Ω,m). Then u has derivative

u′(t) = −2 < Aa,φHa,φ1
t f ,Ha,φ1

t f > .

Thus, it suffices to show that

(5.4.45) < Aa,φ1 f , f >≥ −a2|| f ||22,

for all f ∈ C∞0 (Ω). If this holds, we have u′ ≤ a2u, that is u(t) ≤ ea2tu(0) = ea2t || f ||22, the desired inequality. To prove

(5.4.45), write

< Aa,φ1 f , f >=< −e−aφ1 Lφ(eaφ1 f ), f > =

∫
Ω

∇(eaφ f )∇(e−aφ f )dm + λ1

∫
Ω

f 2

1 + d2+σ
dm

≥

∫
Ω

|∇ f |2dm − a2
∫

Ω

|∇φ|2| f |2dm ≥ −a2
∫

Ω

| f |2dm.

Where we have used that λ1 ≥ 0 and the fact that |∇φ| ≤ 1. This proves the Lemma. �

Theorem 5.4.2. There exists a constant A such that, for any ε ∈ (0, 1), for γ ∈ (1, 2) and any two balls B1 =

B(x, r1), B2 = B(y, r2) (see Definition 5.1.1), we have

hφ(t, x, y) ≤
C

[V(x, r1)V(x, r2)]1/2 exp
(
−
|x − y|2

4t
+ ε(γ + 2)

|x − y|
√

t

)
,

for all t ≥ ε−2 max{r2
1, r

2
2}.

proof: Let (Ha,φ1
t )t>0 be defined as above. By Lemma (5.4.1) we have

||Ha,φ1
t ||2→2 ≤ ea2t.

Fix x, y ∈ Ω and r1, r2 > 0 and χ1 (resp χ2) be the function equal to 1 on B1 = B(x, r1) (resp B2 = B(y, r2)) and equal
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0 otherwise. Then ∫ ∫
(ξ,ζ)∈B1×B2

h(t, ξ, ζ)e−a(φ1(ξ)−φ1(ζ))dm(ξ)dm(ζ) =< χ1,H
a,φ1
t χ2 >

≤ ||Ha,φ1
t ||2→2||χ1||2||χ2||2 ≤ ea2tV

1
2 (x, r1)V

1
2 (y, r2).

Now, by our assumption on Ω we can assume that there exist a length curve γ : [a, b]→ Ω, such that, γ(a) = y, γ(b) = x

and ||γ|| ≤ C0|x − y| where C0 depends on diameter of Ω. Then

φ1(x) − φ1(y) =

∫ b

a

d
dt

(φ1(γ(t)))dt =

∫ b

a
∇φ1(γ(t))γ̇(t)dt

≤

∫ b

a
|γ̇(t)|dt ≤ C0|x − y|.

Thus, ∫ ∫
(ξ,ζ)∈B1×B2

hφ(t, ξ, ζ)dm(ξ)dm(ζ)

=

∫ ∫
B1×B2

hφ(t, ξ, ζ)e−a(φ(ξ)−φ(ζ))ea(φ1(ξ)−φ1(ζ))e−a(φ1(x)−φ1(y))ea(φ1(x)−φ1(y))dm(ξ)dm(ζ)

≤ V
1
2 (x, r1)V

1
2 (y, r2) exp(a2t + a(φ1(x) − φ1(y)) + (γ + 2)|a|(r1 + r2)),(5.4.46)

since d(x, ξ) ≤ (γ+2)r1 and d(y, ζ) ≤ (γ+2)r2 (see Definition 5.1.1). Without loss of generality we assume that r2 ≥ r1.

As u(s, ζ)→ hφ(s, ξ, ζ) is a positive solution of (∂t + Lφ)u = 0 in (0,∞)×Ω, assuming that t ≥ r2
2 and applying Theorem

(5.2.3) with p = 1, we obtain

sup
s∈(t−

r2
1
4 ,t)

(hφ(s, ξ, y)) ≤
C

r2
2V(y, r2)

∫ t

t−r2

∫
B2

hφ(s, ξ, ζ)dm(ζ)ds.

Thus, by the above inequality and (5.4.46) we have

(5.4.47)
∫
B1

sup
s∈(t−

r2
1
4 ,t)

(hφ(s, ξ, y))dm(ξ) ≤
CV

1
2 (x, r1)

V
1
2 (y, r2)

exp(a2t + a(φ1(x) − φ1(y)) + (γ + 2)(γ + 2)|a|(r1 + r2)).

By the same token, working with the variable ξ and assuming t ≥ r2
1, we get

hφ(t, x, y) ≤
C

r2
1V(x, r1)

∫ t

t−r2
1/4

∫
B1

hφ(s, ξ, y)dm(ξ)ds

≤
C

V
1
2 (x, r1)V

1
2 (y, r2)

exp(a2t + a(φ1(x) − φ1(y)) + (γ + 2)|a|(r1 + r2)),

where we have used (5.4.47). Taking a = −
(φ(x)−φ(y))

2t and assuming t ≥ ε−2 max{r2
1, r

2
2} we obtain

hφ(t, x, y) ≤
C

[V(x, r1)V(y, r2)]
1
2

exp
(
−
|φ1(x) − φ1(y)|2

4t
+ ε(γ + 2)

|φ1(x) − φ1(y)|
√

t

)
.

Taking (as we may) a sequence of φi ∈ C∞0 (Rn) with |∇φi| ≤ 1 and

φi(x) − φi(y)→ |x − y|,
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finally gives

hφ(t, x, y) ≤
C

[V(x, r1)V(y, r2)]
1
2

exp
(
−
|x − y|2

4t
+ ε(γ + 2)

|x − y|
√

t

)
,

which is the desired result. �

Corollary 5.4.3. Let R =
C0
4γ be the constant of Lemma 5.1.2. Then there exist constant A such that the following upper

bound for is valid for all x, y ∈ Ω and all 0 < t < R2.

hφ(t, x, y) ≤
A

[V(x, t
√

t+|x−y|
)V(y, t

√
t+|x−y|

)]1/2
exp

(
−
|x − y|2

4t

)

proof: This follows from applying Theorem 5.4.2 with B1 = B(x, r1), B2 = B(y, r2), r1 = r2 = ε
√

t, ε = (
√

t
1+|x−y| ). �

By Lemma (5.1.2) we have
V(x,

√
t)

V(x, t
√

t+|x−y|
)
≤

( √t + |x − y|
√

t

)n+1
,

thus, we can deduce from the bound above a slightly less precise but nicer looking estimate, namely, for all x, y ∈

Ω, 0 < t < R2.

hφ(t, x, y) ≤ A
(
√

t+|x−y|
√

t
)n+1

[V(x,
√

t)V(y,
√

t)]
1
2

exp
(
−
|x − y|2

4t

)
.

Furthermore, note ( √t + |x − y|
√

t

)n+1
≤ Cn exp

(
cn
|x − y|
√

t

)
≤ C(n, ε) exp

(
ε
|x − y|2

t

)
,

for all ε > 0. Thus we have

(5.4.48) hφ(t, x, y) ≤
A

[V(x,
√

t)V(y,
√

t)]
1
2

exp
(
−C
|x − y|2

4t

)
.

5.4.2 Heat Kernel Lower Bounds

The Harnack inequalities of section (4.3) easily yield heat kernel lower bounds. First, we have the following on-

diagonal bound.

Theorem 5.4.4. Let R =
C0
4γ be the constant of Lemma 5.1.2. Then there exist constant A such that the following lower

bound is valid for all x ∈ Ω and all 0 < t < R2.

hφ(t, x, x) ≥
c

V(x,
√

t)
.

proof: Fix 0 < t < R2. Let B = B(x,
√

t) ∩ Ω. Let ζ be a smooth function such that 0 ≤ ζ ≤ 1, ζ = 1 in B(x,
√

t
4 ) and

ζ = 0 in Rn \B(x,
√

t
2 ). Also let η be a non-negative solution of

−div(φ2∇η) + λ1
ηφ2

1+d2+σ = 0 in B(x,
√

t
2 ) ∩Ω

η = 1 on ∂(B(x,
√

t
2 ) ∩Ω)
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By Harnack inequality we have for any y ∈ B(x,
√

t
2 ) ∩Ω

1
C
η(y) ≤ η(x) ≤ Cη(y),

letting y to go to a point of the boundary we have

1
C
≤ η(x) ≤ C.

Define

u(t, y) =

{ HtΦ(y), if t > 0

φ , if t ≤ 0
,

where Φ = ζη. Obviously, this function satisfies

(∂t + Lφ)u = 0,

on (−∞,∞) ×B(x,
√

t
4 ). Applying Corollary (5.3.5), first to u and then to the heat kernel (s, y) 7→ h(s, x, y), we get

1
C
≤ u(0, x) ≤ Au(t/4, x) = A

∫
B(x,

√
t

2 )∩Ω

hφ(t/4, x, y)Φ(y)dm(y)

≤ CA2
∫
B(x,

√
t)

hφ(t, x, x)dm(y) ≤ CA2V(x,
√

t)hφ(t, x, x).

This gives

hφ(t, x, x) ≥ C−2A−2V(x,
√

t)−1,

as desired. �

Theorem 5.4.5. Let R =
C0
4γ be the constant of Lemma 5.1.2. Then there exist constant A such that for all x, y ∈ Ω and

all 0 < t < R2 the heat kernel hφ(x, t, y) satisfies

hφ(t, x, y) ≥
a

V(x,
√

t)
exp

(
− A
|x − y|2

t

)
.

proof: Apply Corollary (5.3.5) to u(s, y) = h(s, x, y) with x fixed and s = t
4 . This gives

hφ(t, x, y) ≥ Ahφ(
t
4
, x, y) exp

(
− A
|x − y|2

t

)
.

The result follows by Theorem (5.4.4) and Lemma 5.1.2. �

Consider now the heat kernel h(t, x, y) of ut = ∆u + u
4d2 . Then we have the following theorem

Theorem 5.4.6. Let R =
C0
4γ be the constant of Lemma 5.1.2. Then there exist constant A such that for all x, y ∈ Ω and

all 0 < t < R2 the heat kernel h(x, t, y) satisfies

C1

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A1

|x − y|2

t

)
≤ h(t, x, y) ≤ C2

[
min

(d(x)
√

t
, 1

)
min

(d(y)
√

t
, 1

)] 1
2

t−
n
2 exp

(
− A2

|x − y|2

t

)
.
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proof: We note here that h(t, x, y) = φ(x)φ(y)hφ(t, x, y). For hφ(t, x, y) we have the following estimate

a1

V
1
2 (x,
√

t)V
1
2 (y,
√

t)
exp

(
− A1

|x − y|2

t

)
≤ hφ(t, x, y) ≤

a2

V
1
2 (x,
√

t)V
1
2 (y,
√

t)
exp

(
− A2

|x − y|2

t

)
.

We also have

C1
d(x)
|x|2an+1 ≤ φ

2(x) ≤ C2
d(x)
|x|2an+1 ,

where an = n−2
2 +

√
(n−2)2

4 − 1
4 . Using now the Lemma 5.1.2 we have

C1 min
(d(x)
√

t
, 1

)
t

n
2 ≤

φ2(x)

V(x,
√

t)
≤ C2 min

(d(x)
√

t
, 1

)
t

n
2 .

Thus combining all above we have the desired result. �
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