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Chapter 1

Introduction

In the following pages we will examine the use of linear algebra in combinatorics.
More precisely we will look at some theorems from the area of discrete geom-
etry,extremal combinatorics and finite fields constructions. The dates of the
results span from the beginning of the 20th century (the Dehn theorem) to re-
cent years (the Dvir theorem) . The tools used although may appear elementary
they give powerful and interesting results .
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Chapter 2

Useful Lemmas

First we will prove some theorems that we will make frequent use of.

Note In the following pages F will denote a finite field.

Definition Let U be a m×m matrix over R. If for all nonzero vectors x it
is true that xUxT > 0 we say that the matrix is positive definite. If it is true
that xUxT ≥ 0 we say that the matrix is positive semidefinite.

Definition Let V be a linear space over Q. A linear function is a map

f : V → Q

with the property that for all a, b ∈ V we have

f(a+ b) = f(a) + f(b)

We also know that if two elements a, b ∈ V are linearly independent there is a
linear function that f(a) = 0 and f(b) = 1.

Definition A symmetricm×mmatrix B with real entries is positive semidef-
inite if for any x ∈ Rm the quadratic form xBTx is nonnegative. If in addition
the only case the quadratic form xBTx vanishes is only when x is itself zero
then B is positive definite.

Theorem 1. (Schwartz 1980) Let f ∈ F [x1, .., xn] be a non zero polynomial
with degree d and Ω ⊆ F be a set with |Ω| = N . Let Z(f,Ω) denote the set of
roots from Ωn. Then

|Z(f,Ω)| ≤ dNn−1

Proof. By induction on n, the number of variables.
For n = 1 the number of roots cannot exceed the degree thus |Z(f,Ω)| ≤ d.
For n ≥ 2 we write f in terms of the powers of xn
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f(x1, ..., xn) = g0 + g1xn + g2x
2
n + ...+ gkx

k
n (2.1)

where gi ∈ F [x1, ..xn−1] , deg gi ≤ d − i and gk is not the zero polynomial.
We choose an element (a1, ..., an) of Z(f,Ω) at random. There are two possible
cases :

1) gk(a1, ..an−1) = 0
As deg(gk) ≤ d − k by the inductive hypothesis the number of roots of gk in
the subset Ωn−1 is at most (d− k)Nn−2. Thus the possible maximal number of
those tuples is ≤ (d− k)Nn−1 .

2) gk(a1, ..an−1) 6= 0
In this case we bound the number of tuples simply by Nn−1. Since an must
now be a root of the non zero polynomial f of degree k, the number of possible
choices for an is at most k. Hence this case results in at most kNn−1 roots of f.

The two upper bounds add to total of dNn−1 completing the proof.

The following lemma is an immediate consequence of the above.

Lemma 1. Small degree lemma A polynomial in F d of degree less than
q = |F | cannot vanish everywhere unless it is the zero polynomial

Proof. Let P be a non zero polynomial. Since deg(P ) ≤ |F |−1 by the Schwartz
theorem the number of its roots cannot exceed the number (|F | − 1)|F |n−1. By
assumption this is a contradiction thus P must be identically zero.

We will now establish some criteria regarding the linear independence of
polynomials.

Lemma 2. (Diagonal Criterion) For i = 1, ..,m let fi : Ω −→ F be a
function and ai ∈ Ω elements such

fi(aj)
{
6= 0 if i = j;
= 0 if i 6= j.

then f1, ...fm are linearly independent members of the space FΩ

Proof. Let
m∑
i=1

λifi(x) = 0

be a linear relation between the fi. We substitute aj for the variable x and
what remains is λjfj(aj) = 0 which implies that λj = 0 for every j.
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Thus the linear relation under consideration is the trivial one.

Lemma 3. (Triangular Criterion ) For i = 1, ...m let fi : Ω −→ F be a
function and ai ∈ Ω elements such

fi(aj)
{
6= 0 if i = j;
= 0 if i < j.

then f1, ...fm are linearly independent members of the space FΩ.

Proof. For a contradiction we assume there exists a nontrivial linear relation∑m
i=1 λifi = 0 between the fi. Let i0 be the greater i such that λi 6= 0. We

substitute ai0 for the variable on each side. By the above condition for the
fi(aj) all but one terms vanish and what remains is

λi0fi0(ai0) = 0

. Which implies that λi0 = 0. Which is a contradiction.

We will now present some classic and useful results in enumerate combina-
torics.

Lemma 4. The number of integer solutions to the equation

x1 + ...+ xn = r

under the condition that xi > 0 for all i = 1, ..., n is
(
r−1
n−1

)
Proof. A typical solution to the above equation looks like this

(• • •| • |...| • •)

that is the number of points • denote the size of xi and the | separate consecutive
t xi’s. There are r − 1 possible places to put the | and the cardinality of the |
is n− 1. Thus the number of possible configurations is

(
r−1
n−1

)
, and our proof is

complete.

Lemma 5. The number of integer solutions to the equation

x1 + ...+ xn = r

under the condition that xi ≥ 0 for all i = 1, ..., n is
(
n+r−1

r

)
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Proof. The proof is almost the same as the previous lemma the trick is to add
n ’dummy’ • in the initial configuration thus having n + r − 1 possible places
to put the |. (which will lead us to a number of

(
n+r−1

r

)
possible solutions).

For every configuration once me put the | in place we remove the ’ghost’ • and
completing the proof.

Lemma 6. The number of monomials

xa1
1 xa2

2 ...xan
n

with
a1 + a2 + ...+ an ≤ d

is
(
n+d
d

)
.

Proof. We can rewrite the above elements as xa1xa2 ...xan1an+1 , we see that
their cardinality is the number of possible integer solutions of the equation
a1 + a2 + ...+ an + an+1 under the condition xi ≥ 0. From the previous lemma
this number is

(
n+d−1+1
d+1−1

)
and the proof is complete.

Lemma 7. (Degree lemma) Let E ⊆ Fn be a set of cardinality less than(
d+n
n

)
for some d ≥ 0. Then there exists a non zero polynomial P ∈ F [x1, ...xn]

on n variables of degree at most d which vanishes on E.

Proof. Let V be the vector space of polynomials in F [x1, ...xn] of degree at most
d. The set of monomials

xa1xa2 ...xan

with
a1 + a2 + ...+ an ≤ d

forms a basis for V. Thus V has dimension
(
n+d
d

)
. On the other hand the vector

space FE of F-valued functions on E has dimension

|E| ≤
(
n+ d

d

)
. Hence the evaluation map

P 7→ (P (x))x∈E

from V to FE is non injective,and the claim follows.



Chapter 3

The Kakeya Problem

We will examine the Kakeya problem in which we had recently a breakthrough
in Finite geometries thanks to Dvir, Tao, Sharir and other researchers.

A Besicovitch set is a subset of Rn which contains a unit line segment in
each direction. Besicovitch sets are also known as Kakeya sets. The following
is believed to be true .

Conjecture. A Besicovitch set in Rn must have Hausdorff dimension n.

The problem above looks like geometric measure theory. The motivation for
studying it comes from harmonic analysis, analytic number theory, and PDE.
And the techniques used to prove some (partial) results are mostly geometri-
cal and combinatorial, additive number theory being the latest addition. It is
generally expected that ideas from other, seemingly unrelated, fields of mathe-
matics will be needed to finally resolve the problem. More information of the
problem can be found in [6].

In 1999, Wolff posed the finite field analogue to the Kakeya problem, in
hopes that the techniques for solving this simpler conjecture could be carried
over to the Euclidean case.

Finite Field Kakeya Conjecture: Let F be a finite field, let K ⊆ Fn be
a Kakeya set, i.e. for each vector y ∈ Fn K contains a line {x+ ty : t ∈ F} for
some x ∈ F. Then the set K has size at least cnFn where cn → 0 is a constant
that only depends on n.

The above hypothesis was proved in 2008 from Zeev Dvir,his proof we are
going to present in the following pages.

Definition 1. A Kakeya set in Fn is a set K ⊂ Fn that contains a line in
every direction. More formally K is a Kakeya set if for every x ∈ F there is a
y ∈ F such the line

Lx,y = {y + ax|a ∈ F}
is contained in K

11
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Theorem 2. (Dvir 2008)
Let K ⊂ Fn be a Kakeya set and |F | = q then

|K| ≥ Cnqn

.

Proof. It is sufficient to show that all the Kakeya sets have size at least(
q + n− 1

n

)
since it is true that(

q + n− 1
n

)
≥ (q + n− 1)(q + n− 2)...(q)

n!
≥ qn

n!

We will suppose there exists a kakeya set K ⊂ Fn of size less than
(
q+n−1
n

)
.

which will lead us to contradiction.

We make use of the degree lemma.
Thus there exists a polynomial P ∈ F [x1, ...xn] of degree at most q − 1 so

that for every x ∈ K is a root of P.
We can write

P =
q−1∑
i=0

Pi

where Pi denotes the homogeneous part of P of degree i.
Since K is a kakeya set for every y ∈ Fn there exists x ∈ Fn so that for

every a ∈ F we have P (x+ ay) = 0 . For a fixed pair of x and y P (x+ ay) is a
polynomial on a of degree d ≤ q − 1.

Thus we can see that his polynomial vanishes in q different points. So by
the Small degree lemma it must be identically zero and hence all its coefficients
are zero. In particular the coefficient of aq−1 is zero (which can be seen to be
exactly Pq−1(y)).

Since y was arbitrary by Schwartz lemma it follows that the polynomial Pq−1

is identically zero.
Therefore

P =
q−2∑
i=0

Pi

and repeating this argument we conclude that the polynomials Pq−2.Pq−3, ..., P1

are all identically zero.
Thus P is a constant P0 = 0 as it vanishes at K.

A contradiction .

Note The original proof of the theorem can be found in [4]
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Remark 1. It is easy to see that cn = 1/n! above; this was recently improved
to

cn = (1/2 + o(1))n

which is best possible except for possible refinements of the o(1) error.

The above proof can be found in [7].

Remark 2. It is also possible, following exactly the same steps, to prove a
weaker form of the theorem about (δ, γ)-kakeya sets.

(A set K ⊂ Fn is a (δ, γ)-kakeya set if there exists a set L ⊂ Fn of size at
least δqn that for every x ∈ L there is a line in the direction x that intersects
K in at least γq points.)

Lemma 8. Let K ⊂ Fn be a (δ, γ)-kakeya set. Then :

|K| ≥
(
d+ n− 1
n− 1

)
where

d = bqmin{δ, γ}c − 2.

Remark 3. Using the same machinery we can construct bounds on the size of
Nikodym sets.

A set B in Fnq is Nikodym if for each x ∈ Bc there exists a line L such that

L ∩Bc = {x}

In other worlds any point x ∈ Bc belongs to a line that lies entirely in B (except
for the point x itself).

Theorem 3. Let F be a finite field with |F | = q any Nikodym set B ⊂ Fn

satisfies

|B| ≥
(
q + n− 2

n

)
Proof. We suppose that exists a Nikodym set B ⊂ Fn of size less than

(
q+n−2
n

)
By degree lemma there exists a non zero polynomial P ∈ F [x1, ..., xn] on n
variables of degree at most d− 2 that vanishes on B.
By our initial assumption we have Bc 6= ∅ and in fact

|Bc| ≥ qn −
(
q + n− 2

n

)
.

Since B is a Nikodym set for every x ∈ Bc there exist a line Lx such for
every y ∈ Lx\{x} it is true y ∈ B, (and so P (y) = 0)
The restriction of P on the line Lx is a polynomial of degree at most q− 2, and
since it has q−1 roots (the points y) by Schwarz Lemma P is the zero polynomial.

As a result P is takes the value zero also on the point x. Since x was an
arbitrary point of Bc and P is also identically zero in B it follows that P is
identically zero in Fn. Thus by the Small degree lemma P is the zero
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Note Unfortunately the above it is not a good bound. For example for the case
n = 2 the bound will be(

q + 2− 2
2

)
=
q(q − 1)

2
=
q2

2
+O(q)

but us we see in the following theorem this bound can be improved to 2q2/3 +
O(q) > q2/2 +O(q) for big enough q :

Theorem 4. (Liangpan Li 2008) Any Nikodym set B ⊂ F 2
q satisfies

|B| ≥ 2q2/3 +O(q) (q →∞)

Proof. We set s = bq/3c. First we assume that

|Bc| ≥ s(q − 1) + 2q

Since B is a Nikodym set, for each x ∈ Bc there exists a line Lx such that

Lx ∩Bc = {x}

Obviously , all of these lines are distinct from each other since their points
(except one) belong to B.
We know that the cardinality of the directions of lines laying in in F 2

q is
q2−1
q−1 = q + 1

We partition {Lx}x∈Bc into classes {Gi}qi=0 according to their directions. With-
out loss of generality we may assume that

|G0| ≥ |G1| ≥ |G2| ≥ ... ≥ |Gq|

Thus

q + q + |G2|· (q − 1) ≥
q∑
i=0

|Gi| = |Bc| ≥ s(q − 1) + 2q

from which yields
|G2| ≥ s

Since |G0| ≥ |G1| ≥ |G2| we can choose s parallel lines from each classG0, G1, G2.
We denote the new classes W0,W1,W2, where Wi ⊂ Gi and |Wi| = s.
Each line of class W0 will have exactly q− 1 points in B, and all those lines are
parallel (they have no point in common). Thus

|B| ≥ |B ∩W0| = s(q − 1)

We now check what the lines in class W1. Each line of this class has exactly
q − 1 points in B, two (different) lines of W1 have no point in common, and
since we are on the plane each line of the class W0 intersects with all the lines
of the class W1.
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That is each line of the class G1 has exactly q−1− s points in B not belonging
in W0. Thus

|B| ≥ s(q − 1) + s(q − 1− s)

Following the same analysis for the class W2 we reach the conclusion that

|B| ≥ s(q − 1) + s(q − 1− s) + s(q − 1− 2s) = 3s(q − 1− s)

≥ 3(q/3− 1)(q − 1− q/3) = (q − 3)(2q/3− 1) = 2q3 − 3q + 3 = 2q3 +O(q)

Now for the case
|Bc| < s(q − 1) + 2q

the proof is straightforward .

|B| = |F 2| − |Bc| > q2 − s(q − 1)− 2q ≥ q2 − q(q − 1)/3− 2q

Thus |B| ≥ 2q2/3 +O(p).
Comparing the two cases we reach the desired conclusion.

Note The original proof can be found in [5]
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Chapter 4

The Joints Problem

Using the linear algebra method we can give a good bound about the possible
number of joints in the Euclidean spaces.

Definition A joint in Rd is a point incident to at least d lines, not all in a
common hyperplane.

Theorem 5. (Sharir, Kaplan, Shustin, 2009)
The maximum possible number of joints is Rd of a set of n lines is O(nd/(d−1))

Proof. Let m = |J | and n = |L|
Step 1 A bipartite graph

We construct the digraph D with the vertex set (L,J) were L are the lines in
some possible configuration in Rd. J is the set of joints and the set of edges
E(D) denotes the obvious relation between the lines and the joints (that is a
line in L is incident only to those joints in J that are actually it’s points in Rn.)

Step 2 Pruning
We construct the subgraph D’ with the following process :

If a line l ∈ L is incident to fewer than m/(2n) joints then we remove it from
L and also all its incidents points of J .
This process stops when it is not possible to remove any more points.

Its is easy to see that we will delete at most m/2 points.
Indeed let L2 be the set of deleted points, µ(l) denote the number of incident
joints of an element l ∈ L it is true that:

|L2| ≤
∑

l∈L:µ(l)< m
2n

µ(l) ≤ |L|m
2n

=
m

2

Thus the vertex set of D’ will be a (L′, J ′) where

L′ ⊆ L, J ′ ⊆ J

and every point of L′ is incident to at least m/(2n) surviving points. Of course
since each joint belongs to at least d lines (and with the ’pruning’ algorithm

17
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is continuing to be true in the remaining sub-configuration) each point of J’ is
incident to at least d points of L′ (not all in the same hyper plane).

Step 3 False assumption
We already know that |J ′| ≤ m thus by the degree lemma there exists a d-
variate polynomial P with degree at most b.
Where b is the smallest integer satisfying

m <

(
b+ d

b

)
which vanishes at all the points of J ′.

We now search a bound of b. Since b is minimal it is true that:

Km >

(
b+ d

b

)
≥ bd

d!

for some large enough integer K. Thus

b < (Kmd!)1/d

We will now assume that in some configuration of lines there are

m > And/(d−1)

joints. In order for our assumption to lead us a contradiction we must choose A
big enough such that the number of surviving points (on each line ) is greater
than b (the degree of P ).
In other worlds we must have

m

2n
> b

Which will hold if
m

2n
> (Kmd!)1/d > b

That lead us to the relation

m > (2n)d/(d−1)(Kd!)1/(d−1)

And in order to be true we simply choose A > (2)d/(d−1)(Kd!)1/(d−1)

Now since the number of roots on each line (of the set L’) of the polynomial
P is greater than it’s degree d by by the Schwartz lemma it vanishes identically
on every line of L′.

Step 4 Differentiating
For every point a ∈ J ′ we can parametrize all the points in it’s incidence line L’
as a+ tu t ∈ R , u ∈ Rd with ||u|| = 1 (Where || • || is the Euclidean norm).
For every neighborhood of a we have

P (a+ tu) = P (a) + t∇P (a)u+O(t2)

. (Always true since P ∈ C∞).
Since P is identically zero in each line l we have ∇P (a)u = 0.
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This holds for every (remaining) line incident to a. Since a is a joint we have
seen that there are at least d lines in L′.

(Which lines actually span the entire Rd). So ∇P (a) being orthogonal to
them all must be the zero vector.
Thus all the first-order derivatives of P vanish at a .

Step 5 Final Step
Lets us now consider the derivatives Pxi

the degree is at most b− 1.Since:

a) Every line l ∈ L′ contains more than b− 1 points of J ′.

b) Pxi
vanishes at each and every point of those lines.

Then by Schwartz’s lemma Pxi must vanish identically on l.
That means all the first-order derivatives of P vanish on all the lines of L′.
We can repeat the above process to each of these derivatives and we can con-
clude that all partial derivatives of P vanish identically on of lines off L′.
This is impossible because eventually we must reach derivatives which are
nonzero constants on Rd.

This is a contradiction.

Note. The original proof can be found in [4].



20 CHAPTER 4. THE JOINTS PROBLEM



Chapter 5

Discrete geometry problems

In this chapter we will examine some problems of the field of discrete geometry
and in particular the Distance problem (defined below)

The distance problem Let

U = a1, a2, ..., am

be a set of points in the euclidean space Rn. For the euclidean distance we make
use of the euclidean norm L2. Let A ∈ R be the set of all possible distances be-
tween these points (the distance set). That is we have ||xi−xj || ∈ A ,with j 6= i.

Let
K(n, l)

denote the maximal number m that there exists a family m of points U |U | =
K(n, l) in Rn with distance set |A| = l we search bounds of the number K(n, l).

First we will see how the linear algebra method can be used to give bounds
in some special cases.

Lemma 9. K(n,1)= n+ 1

Proof. We simply use the (n+1)-simplex polytope in every space Rn. Which is a
maximal configuration (we cannot add more points to make it a (n+2)-simplex)
and has (n+ 1) vertices.

Theorem 6. (Larman-Rogers-Seidel 1977)

K(n, 2) ≤
(
n

2

)
+ 3n+ 2

21
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Proof. We use the classic notation

||x|| = (
n∑
i=1

x2
i )

1/2

for the Euclidean norm in Rn . Let U be a possible configuration of points U
in Rn.

This set U = a1, a2, ..., am gives birth to the following family of polynomials
F

fi(x) = (||x− ai||2 − d2
1)(||x− ai||2 − d2

2)

where d1, d2 are the elements of the two-point set A (the two possible dis-
tances).
We can easily see that

fi(aj) =
{

(d1d2)2 6= 0 if i = j;
0 if i 6= j.

By the triangular criterion these polynomials are linearly independent.
We now search the cardinality of the basis of (some) linear space in which

they reside. If we expand a polynomial fi of this family we can see that it is in
fact a linear combination of the following (linearly independent) polynomials

(
n∑
i=1

x2
i )

2, (
n∑
i=1

x2
i )xj , xixj , xi, 1

Using simple combinatorics to count their number we can see that their
cardinality is actually

1 + n+ (
(
n

2

)
+ n+ 1) =

(
n

2

)
+ 3n+ 2

The above number is the cardinality of the linear basis in question.

Since fi are linearly independent their number cannot exceed the cardinality
of their linear base this completes the proof.

Note The original proof can be found in [1].

We now make use of the linear algebra method for the general case K(n, s)

Theorem 7. (s-distance sets) Using the notation above for the number of
points K(n, s) we have(

n+ 1
s

)
≤ K(n, s) ≤

(
n+ s+ 1

s

)
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Proof. The upper bound Let y1, .., ym be a configuration of points in Rn

having the distance set A = {d1, ..., ds}.
We once again construct the family F of polynomials

fi(x) =
s∏

k=1

(||x− yi||2 − d2
k)

and once again the polynomials fi are linearly independent. Let L be the
linear space which they generate.

We now search the cardinality of a basis of L. To do this we can use following
trick.

1) We expand the norm-square expression in each factor of fi and collect
the squares. Thus the fi’s can be written as the sum of

(
∑

x2
i )
k0xk11 ...x

kn
n with

n∑
i=0

ki ≤ s

2) We set z =
∑n
i=1 x

2
i

In this way the fi’s can be seen as polynomials of n+1 variables, with degree
at most s. The dimension of the linear space in which they reside is the number
of homogenous polynomials on n+ 1 variables and degree at most s. Since this
number is

(
n+s+1

s

)
we achieve the desired bound.

The Lower bound Let us consider the incidence vectors of all s-subsets of
a n+1 set. Let us name this set of vectors as W. This set lies on the hyperplane
defined by the equation

n+1∑
i=1

xi = s

and therefore can be viewed as a subset of Rn.

It is easy to see that the cardinality of the distance set of the points of W is
actually s. (The number of all possible different elements between 2 sets is an
integer a ∈ [0, ..., s]. ) Since the number of all s-subsets of a n+1 set is actually(

n+ 1
s

)
we have achieved the desired bound.

If the configuration of points is less general we can achieve tighter bounds.
For example:
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Theorem 8. (Spherical s-distance sets)
The maximum cardinality Ks(n, s) of points in Sn−1 ⊂ Rn having distance set
of size s is (

n+ 1
s

)
≤ Ks(n, s) ≤

(
n+ s− 1

s

)
+
(
n+ s− 2
s− 1

)
Proof. ( The radius of the sphere clearly does not matter. )

The lower bound We consider all the (1,-1)-vectors in Rn+1 with exactly
s negative entries. Using simple combinatorics we can see that their number is(

n+ 1
s

)
Clearly all these points belong to a sphere

Sn ⊂ Rn+1

and they also belong to the hyperplane defined by the equation

n+1∑
i=1

xi = n+ 1− 2s

And since the intersection of a hyperplane and a sphere is actually a sphere of
lower dimension they can be viewer as a subset of

Sn−1 ⊂ Rn

And since their distance set is actually s (the number of all possible different
coordinates between 2 points) we have achieved the lower bound.

The upper bound To achieve the upper bound we proceed as in the linear
case and construct a family D of linearly independent polynomials belonging to
a linear space of the following base

(
n∑
i=1

x2
i )
n, (

n∑
i=1

x2
i )
axk...xl, xi...xj , 1

For the next step we restrict the domain of the polynomials fi in the unit
sphere. The functions will remain independent ( as members of the space of
Sn−1 → R functions), but now we see that they reside in a lower dimensional
space than before.

That is we can drop
∑2
i=1 from the list since it is a constant. We can also

drop x2k
n since

x2
n = 1−

n−1∑
i=1

x2
i

Thus the new base will have the following elements

xk11 ...x
kn−1
n−1 , xn(xb11 ...x

bn−1
n−1 )
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With
n−1∑
i=1

ki ≤ s and
n−1∑
i=1

bi ≤ s− 1

The number of the above elements is(
n+ s− 1

s

)
+
(
n+ s− 2
s− 1

)
and the proof is complete.

More information about this family of problems can be found in [2]
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Chapter 6

Extremal set theory

In this section we will use the polynomial technique to obtain some upper (and
lower) bounds in the size of intersecting families.

Definition Let F be a family of subsets of some n-element set , and let

L ⊆ {0, 1, ...}

be a finite set of nonnegative integers .
We say that F is L-intersecting if

|A ∩B| ⊆ L

for every pair A,B of distinct members of F .

Theorem 9. (Frankl-Wilson 1981) If F is an L-intersecting family of sub-
sets of a set of n elements, then

|F | ≤
|L|∑
i=0

(
n

i

)
Proof. (Due to Babai 1988. The original proof can be found in [2])

Let
F = {A1, ..., Am}

be the family in question. Without loss of generality we can assume that

|A1| ≤ |A2| ≤ .... ≤ |Am|

Let
L = {l1, ..., ls}

be the set of all intersection sizes. That is for every pair (i, j) with i 6= j there
is a k such that

|Ai ∩Aj | = lk

27
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We will now associate each set Ai with its incidence vector ui = (ui1, .., uin),
which we define as

uij =
{

1 if j ∈ Ai;
0 if j /∈ Ai.

It is easy to see that
|Ai ∩Aj | = 〈ui, uj〉

where the form

〈x, y〉 =
n∑
i=1

xiyi

is the standard inner product in Rn.

For our next step we construct the following family F of polynomials fi for
each i = 1, ...,m

fi(x) =
∏

k:lk<|Ai|

(〈ui, x〉 − lk)

(We choose x ∈ Rn so that the above polynomials fi will be n-variable and
well defined.)
We observe that

fi(uj)
{
6= 0 for all 1 ≤ i ≤ m, i = j ;
= 0 for all 1 ≤ j < i ≤ m .

By the diagonal criterion the polynomials f1, f2, ..fm are linearly indepen-
dent.

We now search for the cardinality of a basis of the linear space F. Because
the domain (of the polynomials ) is actually {0, 1} we have x2

i = xi for each
variable xi.

Thus we see that all the f ′is can be represented as sum of monomials . And
we can see also that all the f ′is have degree at most s = |L| (due to the fact s
is the number of all possible intersection sizes).

Thus the set of all monomials on (at most) n variables and degree (at most)
s are a basis of the linear space F .

We can easily see that we have at most
s∑
i=0

(
n

i

)
of them, so the proof is complete.

Using the same arguments we can prove the modular variation of the above
theorem.
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Theorem 10. (Deza-Frankl -Singhi 1983)
Let L ⊆ {0, 1, .., p − 1} and p be a prime number. Assume that F =

{A1, .., Am} is a family of subsets of a set of n elements such that:

(a) |Ai| /∈ L (mod p) when (1 ≤ i ≤ m);
(b) |Ai ∩Aj | ∈ L (mod p) when 1 ≤ j < i ≤ m).
Then

|F | ≤
|L|∑
i=0

(
n

i

)
Proof. We begin with a simple observation. Recall that a polynomial is multi-
linear if it has degree ≤ 1 in each variable. Every multi-linear polynomial of
degree ≤ s is a linear combination of monic multi-linear monomials (products
of distinct variables) of degree ≤ s.
We will also make use of the following lemma:

Lemma 10. (Multilinearization) Let F be a field and Ω = {0, 1}n ⊆ Fn. If
f is a polynomial of degree ≤ s in n variables over F then there exists (unique)
multi-linear polynomial f ′ of degree ≤ s in the same variables such that

f(x) = f ′(x) for every x ∈ Ω

Proof. To prove this one can just expand f and use the identity x2
i = xi, valid

over Ω

We once again introduce a polynomial F (x, y) in 2n variables , this time
x, y ∈ Fnp ,where Fnp is the linear space of dimension n over Fp. We set

F (x, y) =
∏
l∈L

(x · y − l)

where

x · y =
n∑
i=1

xiyi

is the standard inner product in Fnp . Now consider the n-variable polynomials

fi(x) = F (x, ui)

where
ui ∈ Fnp

is the incidence vector of the set

Ai (i = 1, ...,m)

. It is clear from the conditions that for 1 ≤ i, j ≤ m

fi(uj)
{
6= 0 if i = j;
= 0 if i 6= j.

These equations remain valid if we replace the fi by the corresponding linear
polynomials f ′i .
By the diagonal criterion these polynomials are linearly independent over Fp.
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On the other hand all the f ′i are multi-linear polynomials of degree ≤ s and
therefore belong to a space of dimension

|L|∑
k=0

(
n

k

)

Theorem 11. (Bollobas). The original proof can be found in [1]. Let
A1, ..Am be sets of size r and B1, ..Bm be sets of size s such that

(a) Ai ∩Bi = ∅ for i = 1, ..,m
(b) Ai ∩Bj 6= ∅ whenever i 6= j
then we have

m ≤
(
r + s

s

)
Proof. (Due to Frankl )
Let X be the union of all sets Ai ∪ Bi. Let T (X) be an enumeration of the
elements of X. We associate each x ∈ X with a vector

F : x→ 〈1, T (x), ..., T r(x)〉

Every r + 1 of these vectors are linearly independent, since (1, T (x), ..., T r(x))
are points in the moment curve (1, t, ..., tr) ⊆ Rr+1.

Now each subset W ⊂ X we associate it with a polynomial fW (y) of r + 1
variables in the following way:

fW (y) =
∏
u∈W

(y · F (u))

It is easy to see that fBj
(x) = 0 if and only if F (u) · x = 0 for some u ∈ Bj .

The vectors corresponding to the elements of Ai generate a sub-space Si of
dimension r. Let ai be a nonzero vector orthogonal to Si.

From b follows that fBi
(aj) = 0 if i 6= j. Since every r+ 1 vectors F (x), x ∈

X are linearly independent it follows from a and the fact that dim(Si) = r that

dim(〈F (Ai) ∪ F (Bi〉) = r + 1

From the above and since ai is a non-zero vector orthogonal to Si we conclude
that fBi

(ai) 6= 0.

Thus by the diagonal Criterion the polynomials are linearly independent.
And since they are homogenous of degree s in r+ 1 variables their number is at
most (

(r + 1) + s− 1
s

)
and the proof is complete.
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Theorem 12. (Nonuniform Fisher Inequality ) Let Ci, ..., Cm be distinct
subsets of a set of n elements satisfying the following condition :
|Ci ∩ Cj | = λ for some integer λ with 1 ≤ λ < n and for every i 6= j Then

m ≤ n

Proof. First we separate the case that one of the sets Ci has λ elements. Then
all the others must contain this one and be disjoint otherwise. It follows that

m ≤ n+ 1− λ ≤ n

The second case will be that all the sets in question have more than λ elements
that is that the numbers

γi = |Ci| − λ
are all positive.

We construct the incidence matrix M of the set system. (Where {Mij} = 1
if the jth element belongs to the ith set, and zero otherwise ). This condition
can be summarized in the following matrix equation :

A = MMT = λJ + C

where J is the all ones m×m matrix and C is the diagonal matrix

C = diag(γ1, ..., γm)

We will now prove that A is of full rank. We will make use of the following
lemma.

Lemma 11. All positive definite matrices have full rank .

In order to use the above lemma we will prove that λJ is positive semidefinite
and C is positive definite. Indeed let

x = (x1, ..., xm) ∈ Rm

For a m×m matrix U = (µij) we have

xUxT =
m∑
i=1

m∑
i=1

µijxixj

Thus
xλJxT = λ(x1 + ...+ xm)2

And
xCxT = γ1x

2
1 + ...+ γmx

2
m

which justify both claims . Now it is obvious by the definition in chapter [2]
that the sum of a positive definite and a positive semidefinite matrix is positive
definite. Thus A is positive definite , thus it has full rank . Now we can see that

m = rk(A) ≤ rk(MMT ) ≤ rk(M) ≤ n

and the proof is complete .
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Chapter 7

Hilbert’s Third problem

The first of the famous Hilbert’s problems that was solved was Problem 3.
Although the first proof was complicated we will present a greatly simplified
one in the spirit of the previous chapters.

First we will need some definitions.

Definition 2. We call two polyhedra in R3 equidissectible if one can dissect
each of them by a finite number of plane cuts so that the resulting two sets of
smaller polyhedra can be paired off into congruent pairs . In other words , one
can cut up one of them and then reassemble the pieces to obtain the other

Theorem 13. (M. Dehn, 1900) There are two polyhedra in R3 that are not
equidissectable.

Proof. In order to prove the above theorem we will need the following fact. Let

a = arccos(1/3)

Then a/π is irrational.

Proof. Suppose the contrary. Then there exist positive integers k, l such that
a/π = k/l. Thus

a =
k

l
π ⇒ eai = e

k
l πi ⇒ (eai)2l = e2kπ1 = 1

1 = (eai)2l = (
1
3

+

√
1− 1

32
i)2l = (

1
3

+
√

8
3
i)2l

Now we claim that

(
1
3

+

√
1− 1

32
i)n =

an
3n+1

+
√

2bn
3n+1

i

This is true for n = 1. Suppose it holds for n− 1. Then

(
1
3

+

√
1− 1

32
i)n = (

an−1

3n+1
+
√

2bn−1

3n
)(

1
3

+
√

8
3
i)

33
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Multiplying out the right hand side, one arrives at the formulas an =
an−1 − 4bn−1 and bn = bn−1 + 2an−1.

Note that a1 = 1 and b1 = 3 = −1 mod(3) . Plugging into the above
recursions, we see that a2 = −1 mod(3) and b2 = 1 mod(3) . Plugging in once
more we get a3 = 1 mod(3) and b3 = −1 mod(3) , whereupon the cycle repeats.
In particular, bn is never congruent to zero modulo three. which leads us to
contradiction. Thus the proof is complete.

A dihedral angle is the angle subtended by two half-planes with a common
bounding line (the “spine”). Let as consider the following two polyhedra in R3

:

a) The regular simplex.

b) The cube .

Using simple analytic geometry we see that all the dihedral angles at the
edges of the cube are π/2 radians , and the for the angles of the regular simplex
(at it’s edges ) are a radians.

We assume (for a contradiction ) that the regular simplex and the cube are
equidissectible. Let b1, ..., bm be all the dihedral angles that occur at edges of
the smaller polyhedra obtained in the course of dissection. Let V denote the
set of all linear combinations of the bi with rational coefficients. Then V is a
(finite dimensional) linear space over Q. Therefore, it follows that there exists
a linear function

f : V → Q

such that f(π) = 0 and f(a) = 1. We also note that f(π/2) = 0 follows.

Let us now consider, for each polytope P arising in the dissection process
the so-called Dehn invariant of P with respect to f:

W (P ) =
∑
|ei|f(ci)

where the summation extends over all edges ei of P, |ei| denotes the length of
ei and ci is the dihedral angle of P at ei.

Lemma 12. The Dehn invariant is additive.

In other words if we cut a polyhedron to pieces, the W-values of the pieces
add up to the W-value of the whole.

Proof. It suffices to prove this for a single cut

P = Pi ∪ P2

where the two pieces are cut apart along a plane S and have disjoint interiors.
We will show that

W (P ) = W (P1) +W (P2)
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Let us expand each term above and examine what happens to the terms on the
left hand side of the resulting equation.

The terms corresponding to edges not cut by S show up intact on the right
hand size. If S cut across some edge ei, it divides ei , into two pieces both still
attach to the same dihedral angle ci, so the corresponding two terms on the
right hand side add up to |ei|f(ci). If cuts into the spine (the edge ei lies in the
hyperplane S) then S splits the dihedral angle ci and leaves the ei unaltered.
The additivity of f guarantees the that the balances of the two sides is once
again maintained.

Finally, we have to consider the contribution of the new edges arising along
S but not appearing along P. Let e be such an edge (common in P1 and P2 )
and ci the corresponding dihedral angle in Pi. It is obvious that

c1 + c2 = π

. Therefore the contribution of this edge is

|e|f(c1) + |e|f(c2) = |e|f(c1 + c2) = |e|f(π) = 0

This completes the proof of the additivity lemma .

The following corollary is immediate.

Corollary 1. If two polyhedra are equidissectible then they have the same Dehn
invariants

For the final step we see that the Dehn invariant of the cube is 0 (since
f(π/2) = 0) , while the Dehn invariant of the regular simplex is not (since
f(a) 6= 0 ) The proof is complete .



36 CHAPTER 7. HILBERT’S THIRD PROBLEM



Chapter 8

References

1. S. Jukna , Extremal Combinatorics , Springer-Verlag , 2001

2. L. Babai and P. Frankl , Linear Algebra Methods in Combinatorics ,
Preliminary Version , University of Chicago , 1992

3. R.A. Brualdi, Introductory Combinatorics , Fourth Edition , Prentice Hall
, 2004

4. Z. Dvir , On the size of Kakeya sets in finite fields , arXiv:0803.2336v3

5. L. Li , On the size of Nikodym sets in finite fields , preprint

6. T. Wolff , Recent work connected with the Kakeya problem , Prospects in
mathematics , 129 - 162 , Amer. Math . Soc. , Providence ,RI, 1999.

7. L. Guth , H. Katz , Algebraic Methods In Discrete Analogs Of The Kakeya
Problem , arXiv:0812.1043v1

37


